Department of Mathematics and Statistics
University of Massachusetts
Basic Exam: Linear Algebra/Advanced Calculus
January 21, 2003
The number of problems. Do 7 out of the following 9 problems. Indicate clearly which problems should be graded.

Passing standard. To pass at the Master's level it is sufficient to have 60% with three problems essentially complete (including at least one from each part). To pass at the Ph.D. level, 75% with two questions from each part essentially complete.

Part 1. Linear algebra

(1) On \mathbb{R}^{2} we denote by \mathcal{A}_{θ} the operation of rotation by the angle θ. (A positive angle corresponds to counterclockwise rotation.)
(a) Write the matrix A_{θ} of the operation \mathcal{A}_{θ} in the standard basis.
(b) For two angles α and β, derive the formulas for $\sin (\alpha+\beta)$ and $\cos (\alpha+\beta)$ by writing the matrix $A_{\alpha+\beta}$ of the rotation $\mathcal{A}_{\alpha+\beta}$, in two different ways.
(2) Let V be a two dimensional vector space over the field of complex numbers. Let T be a linear transformation of V such that $T^{2}=0$ but $T \neq 0$.
(a) Show that image $(T) \subseteq \operatorname{kernel}(T)$.
(b) Show that there is a basis of V such that the matrix of T in this basis is $\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$.
(c) Do the claims (a) and (b) remain true if V is a two dimensional space over an arbitrary field F ?
(3) Let A be an $n \times n$ matrix with complex entries such that $A^{k}=I_{n}$ for some positive integer k (here I_{n} is the $n \times n$ identity matrix). Show that the trace of A satisfies

$$
|\operatorname{tr}(A)| \leq n .
$$

Here $|\cdot|$ is the usual absolute value for complex numbers.
(4) Let V be a finite dimensional vector space over \mathbb{R}, equipped with an inner product $\langle-,-\rangle$. Let T be a linear operator on V which is self adjoint, i.e.,

$$
\langle T u, v\rangle=\langle u, T v\rangle \quad \text { for any vectors } u, v \in V
$$

Prove or disprove the following statements, making sure that you justify your answers:
(a) For any basis $\mathcal{E}=\left\{e_{1}, \ldots, e_{n}\right\}$ of V, the matrix $T_{\mathcal{E}}$ of T in the basis \mathcal{E}, is symmetric.
(b) If v_{1} and v_{2} are eigenvectors of V corresponding to different eigenvalues $\lambda_{1} \neq \lambda_{2}$, then v_{1} and v_{2} are orthogonal.

Part 2. Advanced Calculus

(1) Compute

$$
\int_{0}^{2} \int_{y^{2}}^{4} y \cos \left(x^{2}\right) d x d y
$$

(2) Find real numbers A and B such that

$$
\lim _{x \rightarrow 0} \frac{A \sin (x)-x(1+B \cos (x))}{x^{3}}=1 .
$$

(3) Use the divergence theorem (also called Gauss's theorem) to compute the integral of the normal component of a vector field over a closed surface

$$
\iint_{S}\left(x y \cdot \boldsymbol{i}+\left(y^{2}+e^{x z^{2}}\right) \cdot \boldsymbol{j}+\sin (x y) \cdot \boldsymbol{k}\right) \cdot \overrightarrow{d S}
$$

Here, a closed surface S is the boundary of a region bounded by the following four surfaces:

- (i) the $x z$-plane,
from bellow by
- (ii) the $x y$-plane,
and from above by both
- (iii) the parabolic cylinder $z=1-x^{2}$, and
- (iv) the plane $z=2-y$.
(4) Compute the volume of the region bounded by the paraboloids $z=9-x^{2}-y^{2}$ and $z=3 x^{2}+3 y^{2}-16$.
(5) Let f be a continuous function on $[0,1]$ such that

$$
f(0)=0, \quad f\left(\frac{1}{2}\right)=1, \quad f(1)=0
$$

Define a sequence of functions $f_{n}(x)=f\left(x^{n}\right), n=1,2,3, \ldots$ Prove or disprove each of the following statements:
(a) f_{n} converges pointwise.
(b) f_{n} converges uniformly on $[0,1]$.

