Department of Mathematics and Statistics University of Massachusetts Basic Exam: Linear Algebra/Advanced Calculus January 21, 2003

The number of problems. Do 7 out of the following 9 problems. Indicate clearly which problems should be graded.

<u>Passing standard</u>. To pass at the Master's level it is sufficient to have 60% with three problems essentially complete (including at least one from each part). To pass at the Ph.D. level, 75% with two questions from each part essentially complete.

Part 1. Linear algebra

- (1) On \mathbb{R}^2 we denote by \mathcal{A}_{θ} the operation of rotation by the angle θ . (A positive angle corresponds to counterclockwise rotation.)
 - (a) Write the matrix A_{θ} of the operation \mathcal{A}_{θ} in the standard basis.
 - (b) For two angles α and β , derive the formulas for $\sin(\alpha + \beta)$ and $\cos(\alpha + \beta)$ by writing the matrix $A_{\alpha+\beta}$ of the rotation $\mathcal{A}_{\alpha+\beta}$, in two different ways.
- (2) Let V be a two dimensional vector space over the field of complex numbers. Let T be a linear transformation of V such that $T^2 = 0$ but $T \neq 0$.
 - (a) Show that $image(T) \subseteq kernel(T)$.
 - (b) Show that there is a basis of V such that the matrix of T in this basis is $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$.
 - (c) Do the claims (a) and (b) remain true if V is a two dimensional space over an arbitrary field F?
- (3) Let A be an $n \times n$ matrix with complex entries such that $A^k = I_n$ for some positive integer k (here I_n is the $n \times n$ identity matrix). Show that the trace of A satisfies $|tr(A)| \leq n$.

Here $|\cdot|$ is the usual absolute value for complex numbers.

(4) Let V be a finite dimensional vector space over \mathbb{R} , equipped with an inner product $\langle -, - \rangle$. Let T be a linear operator on V which is *self adjoint*, i.e.,

$$\langle Tu,v\rangle = \langle u,Tv\rangle \quad \text{for any vectors } u,v\in V.$$

Prove or disprove the following statements, making sure that you justify your answers:

- (a) For any basis $\mathcal{E} = \{e_1, ..., e_n\}$ of V, the matrix $T_{\mathcal{E}}$ of T in the basis \mathcal{E} , is symmetric.
- (b) If v_1 and v_2 are eigenvectors of V corresponding to different eigenvalues $\lambda_1 \neq \lambda_2$, then v_1 and v_2 are orthogonal.

·		

Part 2. Advanced Calculus

(1) Compute

$$\int_0^2 \int_{u^2}^4 y \cos(x^2) \ dx dy.$$

(2) Find real numbers A and B such that

$$\lim_{x \to 0} \frac{A\sin(x) - x(1 + B\cos(x))}{x^3} = 1.$$

(3) Use the divergence theorem (also called Gauss's theorem) to compute the integral of the normal component of a vector field over a closed surface

$$\int \int_{S} (xy \cdot \boldsymbol{i} + (y^2 + e^{xz^2}) \cdot \boldsymbol{j} + \sin(xy) \cdot \boldsymbol{k}) \cdot \overrightarrow{dS}.$$

Here, a closed surface S is the boundary of a region bounded by the following four surfaces:

• (i) the xz-plane,

from bellow by

• (ii) the xy-plane,

and from above by both

- (iii) the parabolic cylinder $z = 1 x^2$, and
- (iv) the plane z = 2 y.

(4) Compute the volume of the region bounded by the paraboloids $z = 9 - x^2 - y^2$ and $z = 3x^2 + 3y^2 - 16$.

(5) Let f be a continuous function on [0,1] such that

$$f(0) = 0, f(\frac{1}{2}) = 1, f(1) = 0.$$

Define a sequence of functions $f_n(x) = f(x^n)$, n = 1, 2, 3, ... Prove or disprove each of the following statements:

- (a) f_n converges pointwise.
- (b) f_n converges uniformly on [0,1].