DEPARTMENT OF MATHEMATICS AND STATISTICS UNIVERSITY OF MASSACHUSETTS
 MASTER'S OPTION EXAM-APPLIED MATHEMATICS

September 2006
Do five of the following problems. All problems carry equal weight. Passing level: 60% with at least two substantially correct.

1. Consider the circuit equation

$$
L I^{\prime \prime}+R I^{\prime}+I C=0
$$

where $L, C>0$ and $R \geq 0$.
(a) Rewrite the equation as a two-dimensional system.
(b) Show that the origin is asymptotically stable if $R>0$ and neutrally stable if $R=0$.
(c) Classify the fixed point at the origin, depending on whether $R^{2} C-$ $4 L$ is positive, negative, or zero, and sketch the phase portrait in all three cases.
2. Consider the system $x^{\prime}=y^{3}-4 x, y^{\prime}=y^{3}-y-3 x$.
(a) Find all the fixed points and classify them.
(b) Show that $|x(t)-y(t)|$ approaches 0 as t approaches ∞ for all other trajectories. (Hint: Form a differential equation for $x-y$.)
(c) Draw the phase portrait.
3. In a certain fishery, assume that fish are caught at a constant rate h (harvesting rate) independent of the size of the fish population. K is
the natural capacity of the fishery, r is the natural growth rate. Then the number of fish in the fishery at any time $t, y(t)$, satisfies

$$
\frac{d y}{d t}=r\left(1-\frac{y}{K}\right) y-h
$$

(a) Determine a condition (an inequality between h, r, K) such that any initial fish population will eventually become depleted (that is, $y(t)=0$ for some $t>0$).
(b) On the other hand, under what conditions is there a stable fixed point y^{*} ? Give an explicit formula for y^{*}.
4. Consider the initial boundary value problem for a function $u(x, t)$:

$$
\begin{gathered}
\frac{\partial u}{\partial t}=D \frac{\partial^{2} u}{\partial x^{2}}, \quad 0<x<L, \quad t>0 \\
u(L, t)=B, \quad \frac{\partial u}{\partial x}(0, t)=Q \\
u(x, 0)=u_{0}(x)
\end{gathered}
$$

(a) Explain in physical terms the meaning of the constants D, B, Q when u represents the temperature in a rod over the interval $0 \leq x \leq L$.
(b) Determine the equilibrium solution $u^{*}(x)$ that is independent of time.
(c) The general solution with initial solution $u_{0}(x)$ has the form

$$
u(x, t)=u^{*}(x)+\sum_{k=1}^{\infty} e^{-\lambda_{k} t} \phi_{k}(x)
$$

Exhibit both the differential equation and the boundary conditions that each function ϕ_{k} must satisfy.
5. Consider the Laplace equation

$$
\Delta u=u_{x x}+u_{y y}=0 \text { in } x^{2}+y^{2}<R^{2}
$$

in a disk of radius R. Find the solution u satisfying the boundary condition

$$
u(R, \theta)=3 \cos (2 \theta)+5 \sin (\theta) \quad(\theta \in[0,2 \pi])
$$

6. The motion of a string with friction is modeled by the modified wave equation

$$
u_{t t}-c^{2} u_{x x}+\gamma u_{t}=0
$$

Here $\gamma>0$ and $u_{x}(0, t)=u_{x}(L, t)=0$.
(a) Let

$$
E=\frac{1}{2} \int_{0}^{L}\left(u_{t}^{2}+c^{2} u_{x}^{2}\right) d x
$$

and derive the identity

$$
\frac{\partial E}{\partial t}=-\gamma \int_{0}^{L} u_{t}^{2} d x
$$

(b) Interpret this identity in terms of dissipation of energy.
7. Consider the following hat function $f(x)$ given by

$$
f(x)= \begin{cases}x & \text { if } 0 \leq x \leq \pi / 2 \\ \pi-x & \text { if } \pi / 2 \leq x \leq \pi\end{cases}
$$

(a) Find the Fourier sine series for $f(x)$.
(b) Find the Fourier sine series for $f^{\prime}(x)$.
(c) What can you say about their convergence at $\pi / 2$.

