UMASS AMHERST - BASIC EXAM - COMPLEX ANALYSIS

JANUARY 12, 2011

Provide solutions for Eight of the following Ten problems. Each problem is worth 10 points. To pass at the Master's level, it is sufficient to have 45 points, with 3 essentially correct solutions; 55 points with 4 essentially correct solutions are sufficient for passing at the Ph.D. level. Indicate clearly which problems you want graded.

NOTATION: We denote by \mathbb{D} the open unit disc, i.e. $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$, and by γ its boundary, traversed once counterclockwise.

- (1) (a) Suppose f is an entire function whose real part u(x, y) = Re(f(x+iy)) is a polynomial in x, y. Prove that f(z) is a polynomial in z.
 - (b) Suppose f is an entire function whose real part u(x, y) = Re(f(x+iy)) is bounded above. Prove that f is constant.
- (2) Suppose λ is a real number satisfying $\lambda > 1$ and $f(z) = ze^{\lambda z} 1$. Prove that f(z) has a unique root in the unit disc \mathbb{D} and that this root is a positive real number.
- (3) Suppose f is holomorphic on the region $A = \{z \in \mathbb{C} : 0 < |z| < 2\}$, and that for all $n \ge 0$,

$$\int_{\gamma} z^n f(z) dz = 0,$$

where γ is the unit circle traversed once counterclockwise. Show that f has a removable singularity at 0.

- (4) (a) For which z in C does ∑[∞]_{n=1} zⁿ/(1+z²ⁿ) converge?
 (b) At which z in C is the sum f(z) of this series holomorphic?
- (5) Write down a conformal map that takes the "right-half" of the unit disc, namely $R = \{z \in \mathbb{D} : \operatorname{Re}(z) > 0\}$, onto the unit disc \mathbb{D} .

JANUARY 12, 2011

- (6) For each of the following statements, if the statement is true, give a proof; if it is false, demonstrate this by giving a counterexample.
 - (a) If f is holomorphic on a bounded connected open set $R \subset \mathbb{C}$ and has infinitely many zeros z_1, z_2, z_3, \ldots in R, then f is identically 0 on R.
 - (b) If f, g are non-vanishing holomorphic functions on the open unit disc \mathbb{D} , satisfying

$$\frac{f'}{f}(1/n) = \frac{g'}{g}(1/n), \qquad n = 1, 2, 3, \dots$$

then there exists a non-zero constant c such that $f(z)=c\ g(z)$ for all $z\in\mathbb{D}.$

(7) Suppose f is holomorphic and bounded on the region

$$A = \{ z \in \mathbb{C} : \frac{1}{2} < |z+i| \}$$

and is real on the real interval $(-1, 1) = \{z \in \mathbb{R} | -1 < z < 1\}$. State the Schwartz reflection principle and use it to prove that f is constant.

(8) Let f be holomorphic on the open unit disk \mathbb{D} and let d be the diameter of $f(\mathbb{D})$, that is, $d = \sup\{|f(z_1) - f(z_2)| : z_1, z_2 \in \mathbb{D}\}$. Prove that

$$\left| f'(0) \right| \le \frac{1}{2} d.$$

Hint: Consider the function g(z) = f(z) - f(-z).

(9) Use contour integration to evaluate, for real $\alpha > 0$, the improper integral

$$\int_{-\infty}^{\infty} \frac{\cos(\alpha x)}{1+x^2} \ dx.$$

Be sure to justify all your steps.

(10) Calculate

$$\int_{\gamma} \frac{(z^2 - 1)^2}{z^2 \left(z^2 + 4z + 1\right)} dz$$

where γ is the unit circle traversed once in the counterclockwise direction. Be sure to justify all your steps.

 $\mathbf{2}$