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Do eight out of the following 10 questions. Each question is worth 10 points.
To pass at the Master’s level it is sufficient to have 45 points, with 3 questions essentially
correct; 55 points with 4 questions essentially correct are sufficient for passing at the
Ph.D. level.

Note: All answers should be justified.

1. Determine the Laurent series for the function f(z) =
2

(z2 − 3z + 2)(z − 3)
in the

annulus 1 < |z| < 2.

2. (a) Determine the number of zeroes of z5−2z2 +z +1 in the disk {z : |z| < 10}.
(b) Compute the integral ∫

{|z|=10}

3z4 + 1

z5 − 2z2 + z + 1
dz

3. Compute

∫
C

z7e1/z

1− z7
dz where C denotes the circle {|z| = 2} traversed counter-

clockwise.

4. Compute

∫ ∞

0

x2dx

(x4 + 1)(x2 + 1)
. Justify your computation. In particular, prove all

estimates.

5. Let C be a simply closed contour in a simply-connected domain D and f a mero-
morphic function on D, which is holomorphic along C. Prove that

1

2πi

∫
C

f ′(z)

f(z)
dz

is an integer, equal to the number of zeroes minus the number of poles enclosed
by C, counted with multiplicity.

6. Find a one-to-one conformal map from the region {z | Re(z) < 0, 0 < Im(z) < π}
onto the open unit disk.

7. Determine the number of solutions of cos(z) = czn in the open unit disk for every
positive integer n and constant c satisfying |c| > e.

8. Prove or disprove:

(a) Any entire function is a limit of polynomials, uniform on bounded subsets.
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(b) The image of the complex plane C under a non-constant entire function is
dense in C.

(c) If g(z) is an entire function, g(0) = 1, f(z) = g(z)
z

, u(x, y) = Re(f(x + iy)),
v(x, y) = Im(f(x + iy)), and C is the circle of radius 1 centered at the origin,
then ∫

C

u(x, y)dx− v(x, y)dy = 0.

9. Let f be a one-to-one holomorphic map from a region Ω1 onto a region Ω2. Assume
that the closure of the disc D := {z : |z − z0| < ε} is contained in Ω1. Prove
that the inverse function f−1 : f(D) → D is given by the integral formula

f−1(ω) =
1

2πi

∫
|z−z0|=ε

f ′(z)

f(z)− ω
· zdz.

10. Let U := {z : |z| < 2 and |z − 1| > 1
2

and |z + 1| > 1
2
}, and f a holomorphic

function on U . Recall that if γ1 and γ2 are closed chains in a region Ω in the
complex plane, which are homologous in Ω, then

∫
γ1

g(z)dz =
∫

γ2
g(z)dz, for every

function g holomorphic in Ω, by the general form of Cauchy’s Theorem.

(a) Use Cauchy’s Theorem to prove that there exists a decomposition f(z) =
f1(z) + f2(z) + f3(z), for all z ∈ U , where

f1(z) =
∞∑

n=1

αn(z − 1)−n,

f2(z) =
∞∑

n=1

βn(z + 1)−n,

f3(z) =
∞∑

n=0

γnz
n,

and each of the series converges absolutely in U and uniformly on compact
subsets of U . Hint: Express f(z) as an integral over three circles (indicate
the domain Ω chosen in the application of Cauchy’s Theorem and provide a
proof to any claim that two chains are homologous in Ω).

(b) Prove that the above decomposition is unique. Hint: Relate fi to the Laurent
series of f in suitable annuli contained in U .
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