DEPARTMENT OF MATHEMATICS AND STATISTICS
 UNIVERSITY OF MASSACHUSETTS
 BASIC EXAM - NUMERICS
 August, 2008

Do five of the following problems. All problems carry equal weight.
Passing level:
Masters: 60% with at least two substantially correct.
Ph.D.: 75% with at least three substantially correct.

1. Find the Padé approximation

$$
R_{1,1}(x) \equiv \frac{a+b x}{1+c x}=p_{2}(x)+O\left(x^{3}\right)
$$

of the polynomial $p_{2}(x)=1-\frac{1}{2} x+\frac{1}{24} x^{2}$, and use it to deduce the approximation

$$
\cos (x)=\frac{12-5 x^{2}}{12+x^{2}}+O\left(x^{6}\right)
$$

2. Consider the fixed point iteration defined by the formula $x_{n+1}=F\left(x_{n}\right)$, where

$$
F(x)=x-a+2 a e^{-x} .
$$

Here $a \neq 0$ is a parameter.
(a) Find the fixed point, p.
(b) Determine for which values of a the iteration converges to p and those for which they diverge away from p. Your answer must be in terms of intervals or unions of intervals.
(c) Does there exist a value of a for which the iteration converges quadratically? If so, find it.
3. Consider the numerical integration rule

$$
I(f)=\int_{-h}^{h} f(x) d x \approx A_{0} f(-h / 2)+A_{1} f(0)+A_{2} f(h / 2)
$$

(a) Find A_{0}, A_{1}, and A_{2} such that the integration rule is exact for polynomials of degree ≤ 2.
(b) Show that the rule constructed in (a) is in fact exact for polynomials of degree ≤ 3.
(c) For the constructed rule, it can be proved that

$$
I(f)-\left[A_{0} f(-h / 2)+A_{1} f\left(0+A_{2} f(h / 2)\right]=c_{0} f^{(4)}(\eta) h^{5}, \eta \in(-h, h)\right.
$$

where c_{0} is a constant independent of f. Find the constant c_{0}.
4. Consider the ODE system

$$
u_{t}=-A u,
$$

where A is a constant symmetric positive definite matrix.
(a) Construct a fourth-order numerical scheme for the above system.
(b) Give the stability condition for this scheme.
(Hint: First consider a similarity transformation of A.)
5. An $n \times n$ matrix of the form $N(\mathbf{y}, k)=I-\mathbf{y e}_{\mathbf{k}}^{\mathbf{T}}$ is called a Gauss-Jordan matrix. Here $\mathbf{e}_{\mathbf{k}}$ is the k th unit coordinate vector, and \mathbf{y} is an arbitrary vector.
(a) Find a formula for $N(\mathbf{y}, k)^{-1}$. Under what conditions does this inverse exist?
(b) Let \mathbf{x} be an arbitrary vector. For a given k, find a vector \mathbf{y} so that $N(\mathbf{y}, k) \mathbf{x}=\mathbf{e}_{\mathbf{k}}$. Under what conditions does such a y exist?
(c) For a given square matrix A, give an algorithm based on Gauss-Jordan matrices that computes A^{-1}. Under what conditions will this algorithm work?
6. Consider the difference scheme

$$
y_{n+1}=\alpha y_{n-1}+\beta y_{n}+\gamma h f\left(x_{n}, y_{n}\right)
$$

for approximating the solution to the equation

$$
\frac{d y}{d x}=f(x, y(x)) .
$$

Find constants α, β and γ for which this has highest order, and the corresponding local truncation error.
7. Given a function $f(x)$, and a set of Gauss quadrature points and weights: $\left\{x_{i}\right\}_{i=1}^{n},\left\{\omega_{i}\right\}_{i=1}^{n}$. Let $P_{k}(x)$ be the Legendre polynomial of degree k.
(a) Define the interpolation of $f(x)$ on the space $\operatorname{span}\left\{P_{0}(x), P_{1}(x), \ldots, P_{n-1}(x)\right\}$, with interpolation points $\left\{x_{i}\right\}_{i=1}^{n}$
(b) Find the L^{2} projection of $f(x)$ onto the above space while using the given Gauss quadrature to evaluate the integrals.
(c) Are the two approximate functions obtained in (a) and (b) the same? Give a detailed explanation.

