DEPARTMENT OF MATHEMATICS AND STATISTICS UNIVERSITY OF MASSACHUSETTS AMHERST BASIC NUMERICS

August 2007

Do five of the following problems. All problems carry equal weight.

Passing Level:

Masters: 60% with at least two substantially correct.

PhD: 75% with at least three substantially correct.

1. Which of the following iterations will converge to the indicated fixed point α (provided x_0 is sufficiently close to α)? If it does converge, give the order of convergence; for linear convergence, give the rate of linear convergence.

(a)
$$x_{n+1} = -1 + x_n + \frac{2}{x_n}$$
, $\alpha = 2$.

(b)
$$x_{n+1} = \frac{1}{2}x_n + \frac{3}{2x_n}, \quad \alpha = 3^{1/3}.$$

(c)
$$x_{n+1} = \frac{16}{1+x_n} - 1$$
, $\alpha = 3$.

2. Determine values of α in the matrix below

$$\begin{pmatrix}
9 & 6 & 9 \\
6 & 20 & 26 \\
9 & 26 & \alpha
\end{pmatrix}$$

for which the matrix is positive definite.(Hint: Use Cholesky Decomposition.)

3. Solve the following minimization problem and determine whether there is a unique α that gives the minimum. α is allowed to range over all reals.

$$\min_{\alpha} \int_{-1}^{1} (x - \alpha x^2)^2 dx$$

We are approximating f(x) = x by polynomials of the form αx^2 in the continuous least squares sense.

4. Consider a well-posed system of ordinary differentiation equations

$$\begin{cases} u_t = Au \\ u(0) = u^0, \end{cases}$$

where A is a constant matrix and u^0 is the initial condition.

- (a) Write down the forward Euler scheme for such a system.
- (b) Give a non-trivial condition for Δt which guarantees stability.
- (c) For what class of matrices A is the condition $\rho(A)\Delta t < 1$, where $\rho(A)$ is the spectral radius of A, is also a sufficient condition for the stability?
- 5. An $n \times n$ matrix A is said to be strictly diagonally dominant if

$$\sum_{\substack{j=1\\j\neq i}}^{n} |a_{ij}| < |a_{ii}| \qquad \text{for } i = 1, \dots, n.$$

Note that the strict inequality implies that each diagonal entry a_{ii} is non-zero. Prove that the Jacobi iteration matrix B_J for A satisfies $||B_J||_{\infty} < 1$ and therefore the iteration converges in this case for any initial vector $x^{(0)}$.

- 6. Consider the integral $\int_{-1}^{1} f(x) dx$,
 - (a) Give the definition of Gauss quadrature
 - (b) Find the points and weights for the Gauss quadrature with exactly two points.
- 7. Consider the ODE initial-value problem

$$\frac{dy}{dx}(x) = f(x, y(x)),$$

with initial data $y(x_0) = y_0$. We would like to solve this initial value problem at points $x_n = nh, n = 0, ..., N$ where $h = x_n - x_{n-1}$ for all n. Find the highest order method in the class

$$y_{n+1} = y_n + h[b_1 f(x_n, y_n) + b_2 f(x_{n-1}, y_{n-1})].$$

i.e., find b_1 and b_2 for the above method which gives the highest order local truncation error. State the order of the method obtained.