DEPARTMENT OF MATHEMATICS \& STATISTICS BASIC EXAM: NUMERICS
 September 2006

Do five of the following problems. All problems carry equal weight.
Passing Level:
Masters: 60% with at least two substantially correct.
PhD: 75% with at least three substantially correct.

1. Newton's method for solving a scalar nonlinear equation $f(x)=0$ requires computation of the derivative of f at each iteration. Suppose that we instead replace the true derivative with a constant value d, that is, we use the iteration scheme

$$
x_{k+1}=x_{k}-\frac{f\left(x_{k}\right)}{d} .
$$

(a) Under what conditions on the value of d will this scheme be locally convergent.
(b) What will be the convergence rate, in general, if the order is linear?
(c) Is there any value for d that would yield quadratic convergence?
2. What is the Cholesky factorization of an $n \times n$ real matrix A, and under what conditions does it exist? Find the Cholesky factorization of

$$
A=\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & 5 & 5 \\
1 & 5 & 14
\end{array}\right)
$$

3. Consider the two-step method

$$
y_{n+1}=\frac{1}{2}\left(y_{n}+y_{n-1}\right)+\frac{h}{4}\left[4 y_{n+1}^{\prime}-y_{n}^{\prime}+3 y_{n-1}^{\prime}\right]
$$

with $y_{n}^{\prime}=f\left(x_{n}, y_{n}\right)$. Show that it is second order and find the leading term in the truncation error.
4. Suppose that you have a table of values of the natural logarithm $\ln x$ for positive integer values of x, and you compute $\ln 1.1$ by quadratic interpolation at $x_{0}=10, x_{1}=11$ and $x_{2}=12$. Give a good bound on the relative error incurred.
5. Let

$$
f(t)=\left[\begin{array}{ll}
0 & \text { if } 0 \leq t \leq \frac{1}{2} \\
1 & \text { if } \frac{1}{2} \leq t \leq 1
\end{array}\right.
$$

Find the linear least squares approximate p_{1} to f on $[0,1]$. That is, the polynomial of degree 1 for which

$$
\int_{0}^{1}\left[p_{1}(t)-f(t)\right]^{2} d t=\text { minumum }
$$

Use the normal equations.
6. $f(x)$ is a polynomial of degree at most 3 . Its value at 9 distinct points is given below:

x	-4	-3	-2	-1	0	1	2	3	4
$f(x)$	-9	0	2	0	-3	-4	0	12	35

Find the exact value of $\int_{-4}^{4} f(x) d x$. Explain how you are sure that your answer is correct.
7. Let A be a nonsingular $n \times n$ real matrix. Given a vector norm $\|\cdot\|$ on \mathbb{R}^{n},
(a) Define the condition number, $\kappa(A)$, and show that $\kappa(A) \geq 1$.
(b) Show that if A is an orthogonal matrix that $\kappa(A)=1$ if the Euclidean norm is used.
(c) Let $A x=b$ and $(A+E) x=b+c$. Prove that

$$
\frac{\|c\|}{\|b\|} \leq \kappa(A) \frac{\|E\|}{\|A\|} .
$$

