DEPARTMENT OF MATHEMATICS AND STATISTICS
 UMASS - AMHERST
 BASIC EXAM - PROBABILITY

January 2013

Work all problems. Show all work. Explain your answers. State the theorems used whenever possible. 60 points are needed to pass at the Masters Level and 75 to pass at the Ph.D. level.

1. Let Y_{1} and Y_{2} have the joint probability density function given by

$$
f\left(y_{1}, y_{2}\right)=c\left(2-y_{1}\right) \text { for } 0 \leq y_{2} \leq y_{1} \leq 2
$$

For the following parts, you can leave your answers in terms of integrals with explicit limits. No need to give the final numerical answers.
(a) (6 points) Find c.
(b) (6 points) Find the marginal density functions for Y_{1} and Y_{2}.
(c) (6 points) Are Y_{1} and Y_{2} independent? Why or why not?
(d) (6 points) Find the conditional density of Y_{1} given $Y_{2}=y_{2}$ and $P\left(Y_{1} \geq 1.5 \mid Y_{2}=0.9\right)$.
2. Let $X \sim N\left(\mu, \sigma^{2}\right)$.
(a) (6 points) Show that the moment generating function of X is

$$
M_{X}(t)=\exp \left(\mu t+\sigma^{2} t^{2} / 2\right)
$$

(b) (7 points) Show that if $X_{1} \sim N\left(\mu_{1}, \sigma_{1}^{2}\right), X_{2} \sim N\left(\mu_{2}, \sigma_{2}^{2}\right), X_{3} \sim N\left(\mu_{3}, \sigma_{3}^{2}\right)$, and X_{1}, X_{2}, X_{3} are independent, then $X_{1}+X_{2}+X_{3} \sim N\left(\mu_{1}+\mu_{2}+\mu_{3}, \sigma_{1}^{2}+\sigma_{2}^{2}+\sigma_{3}^{2}\right)$.
(c) (7 points) Suppose μ_{i} and $\sigma_{i}, i=1,2,3$ are known quantities. Based on X_{1}, X_{2}, X_{3}, construct a statistic that has a Chi squared distribution with 3 degrees of freedom, a statistics that has a t distribution with 2 degrees of freedom, and a statistic that has an F distribution with 1 and 2 degrees of freedom.
(d) (7 points) Suppose that $\mu_{i}=\mu$ and $\sigma_{i}^{2}=\sigma^{2}$ for $i=1,2,3$. Define $S^{2}=\frac{1}{2} \sum_{i=1}^{3}\left(X_{i}-\bar{X}\right)^{2}$ with $\bar{X}=\left(X_{1}+X_{2}+X_{3}\right) / 3$. Show that $E S^{2}=\sigma^{2}$ and $E S \leq \sigma$.
3. Suppose $\left(X_{1}, X_{2}, X_{3}\right)$ follows a multinomial distribution with m trials and cell probabilities $p_{1}, p_{2}, \cdots, p_{3}$. Note that the $\operatorname{Multinomial}\left(m, p_{1}, p_{2}, p_{3}\right)$ probability mass function is $\frac{m!}{x_{1}!\cdots x_{3}!} p_{1}^{x_{1}} p_{2}^{x_{2}} p_{3}^{x_{3}}, x_{1}+x_{2}+x_{3}=$ $m, \quad p_{1}+p_{2}+p_{3}=1$.
(a) (7 points) Find the marginal distribution of X_{1} and the conditional distribution of X_{2} given X_{1}. Write down your reasoning. No mathematical proof is needed.
(b) (7 points) Show that $\operatorname{Cov}\left(X_{1}, X_{2}\right)=-m p_{1} p_{2}$.
(c) (7 points) Let $\left(\begin{array}{l}X_{11} \\ X_{21} \\ X_{31}\end{array}\right),\left(\begin{array}{l}X_{12} \\ X_{22} \\ X_{32}\end{array}\right), \cdots,\left(\begin{array}{c}X_{1 n} \\ X_{2 n} \\ X_{3 n}\end{array}\right)$ be iid random vectors from the above multinomial distribution. Let $\bar{X}_{j}=\frac{1}{n} \sum_{i=1}^{n} X_{j i}, j=1,2$. Find the limiting joint distribution of (\bar{X}_{1}, \bar{X}_{2}). State the theorem used.
(d) (7 points) Find the limiting distribution of $Y_{n}=\bar{X}_{1} / \bar{X}_{2}$. State the theorem used.
4. Suppose we have three cards. The first one is blank on both sides, the second has an X on one side and is blank on the other, and the third has an X on both sides. We run an "experiment" where we choose one card at random and then look at one side of the chosen card at random.
(a) (7 points) What is the probability that you see an X ?
(b) (7 points) What is the probability that you see an X and the other side of the chosen card has an X too?
(c) (7 points) Suppose we run the experiment above and we see an X. Given that outcome, what is the probability that the other side of the card has an X on it too?

