University of Massachusetts Department of Mathematics and Statistics Basic Exam: Topology January 18, 2013

Answer 5 out of the following 7 problems. Indicate clearly which questions you want graded. Justify all your answers.

Passing standard: For Master's level, 60% with two questions essentially complete. For Ph.D. level, 75% with three questions essentially complete.

Problem 1. Let \mathbb{R}_{ℓ} denote the reals with the lower-limit topology and \mathbb{R}^2_{ℓ} the plane with the product topology $\mathbb{R}_{\ell} \times \mathbb{R}_{\ell}$. (Recall that a basis for the lower limit topology are the intervals [a,b) and (a,b) for reals a < b.)

- a) Find the closure of (0,1) in \mathbb{R}_{ℓ} .
- **b)** Prove that \mathbb{R}_{ℓ} is not locally compact.
- c) Let $A = \{(x, -x) : x \in \mathbb{R}\}$. Describe the subspace topology induced by \mathbb{R}^2_{ℓ} on A.

Problem 2. Suppose that $K_1 \supset K_2 \supset \cdots$ is a sequence of nonempty, compact, connected subsets of \mathbb{R}^m , $m \geq 1$. Show that the intersection

$$K = \bigcap_{n=1}^{\infty} K_n$$

is also nonempty, compact, and connected.

Problem 3. Prove that a countable product of sequentially compact spaces is sequentially compact. (If you use Tychonoff's Theorem you must prove it...)

Problem 4. Give examples of the following.

- a) A complete and bounded metric space which is not compact.
- **b)** A compact subset of a topological space X which is not closed.

Problem 5. Prove the following statements.

- a) The space $X = \{f : [0,1] \to [0,1]\}$ with the topology of pointwise convergence (also known as point-open topology) is not metrizable.
- **b)** If $f, g: \mathbb{RP}^2 \to S^1 \times S^1$ are continuous then f is homotopic to g.

Problem 6. Let $p: \tilde{X} \to X$ be a covering map. Let Y be connected and $y_0 \in Y$. Let $f, g: Y \to \tilde{X}$ be continous maps such that:

- $f(y_0) = g(y_0)$, and
- $\bullet \ p \circ f = p \circ g.$

Prove that f = g.

Problem 7. Let $D^* = \{(x,y) \in \mathbb{R}^2 : 0 < x^2 + y^2 \le 1\}$. Let S^1 be the circle and

$$X = D^* \cup_f S^1$$

where the attaching map is given by $f(\cos t, \sin t) = (\cos 5t, \sin 5t)$. Compute $\pi_1(X)$. Give your answer in terms of generators and relations. Is $\pi_1(X)$ an abelian group?