Department of Mathematics and Statistics

University of Massachusetts
Basic Exam: Topology
August 31, 2007
Answer five of the seven questions. Indicate clearly which five questions you want graded. Justify your answers.
Passing standard: For Master's level, 60% with two questions essentially complete. For Ph.D. level, 75% with three questions essentially complete.

Let $C(X, Y)$ denote the set of continuous functions from topological spaces X to Y. Let \mathbb{R} denote the real line with the standard topology.
(1) (a) Give an example of a space which is Hausdorff, locally-connected, and not connected.
(b) Give an example of a space which is Hausdorff, path-connected, and not locally path-connected.
(2) Consider the sequence $f_{n}(x)=\sin \left(\frac{x}{n}\right)$. Determine whether or not the sequence converges in each of the following topologies of $C(\mathbb{R}, \mathbb{R})$: the uniform topology, the compact-open topology, and the point-open (pointwise convergence) topology.
(3) Let $X=\mathbb{R} / \mathbb{Z}$ be the quotient space where the integers $\mathbb{Z} \subset \mathbb{R}$ are identified to a single point. Prove that X is connected, Hausdorff, and non-compact.
(4) Prove the Uniform Limit Theorem: "Let X be any topological space and Y a metric space. Let $f_{n} \in C(X, Y)$ be a sequence which converges uniformly to f. Then $f \in C(X, Y)$."
(5) (a) Let $f: X \rightarrow Y$ be a quotient map, where Y is connected. Suppose that for all $y \in Y, f^{-1}(y)$ is connected. Show that X is connected.
(b) Let $g: A \rightarrow B$ be continuous, where B is path-connected. Suppose that for all $b \in B, g^{-1}(b)$ is path-connected. Suppose there exists $h \in C(B, A)$ such that $g \circ h$ is the identity on B. Show that A is path-connected.
(6) Let \mathbb{R}_{d} and \mathbb{R}_{l} denote the the real line with the the discrete topology and the lower limit topology, respectively. Recall that a basis for \mathbb{R}_{l} is the set of intervals $[a, b)$ where $a<b$. List the functions that make up the following sets: $C\left(\mathbb{R}, \mathbb{R}_{d}\right), C\left(\mathbb{R}_{d}, \mathbb{R}_{l}\right), C\left(\mathbb{R}, \mathbb{R}_{l}\right)$.
(7) Consider \mathbb{R}^{ω} with the product topology, the box topology and the uniform topology. Define the subset

$$
A=\left\{\left(x_{1}, x_{2}, \ldots\right) \in \mathbb{R}^{\omega} \mid 0<x_{i}<1 \text { for all } i \in \mathbb{N}\right\} .
$$

In each topology, describe whether or not A is open.

