University of Massachusetts Dept. of Mathematics and Statistics Basic Exam - Topology January 27, 2006

Answer five of the seven questions. Indicate clearly which five questions you want graded. Justify your answers.

Passing Standard: For Master's level, 60% with two questions essentially complete. For Ph.D. level, 75% with three questions essentially complete.

- 1. Let X, Y be topological spaces with X compact. Let $b \in Y$ and let $U \subset X \times Y$ be an open subset which contains $X \times \{b\}$. Show that there exists a neighborhood V of b such that $X \times V \subset U$.
- 2. Let $A \subset \mathbb{R}$ be compact, and let $B \subset \mathbb{R}$ be closed.
 - (a) Show that the set

$$C = \{a + b \mid a \in A, b \in B\}$$

is closed.

- (b) Find an example of closed sets A and B in \mathbb{R} for which $C \subset \mathbb{R}^2$ is not closed.
- 3. Let A and B be proper subsets of spaces X and Y, respectively. If X and Y are both connected, show that $(X \times Y) (A \times B)$ is connected. (Hint: Try looking at the case X = Y = [0, 1], A = B = (0, 1)).
- 4. Let X = (0,1], Z = [0,1) and Y = [0,1]. Let $f_n : Y \to Y$ be the continuous function whose graph consists of segments from (0,1) to $(\frac{1}{n},0)$ and from $(\frac{1}{n},0)$ to (0,1). Let $g_n : X \to Y$ be the restriction of f_n to (0,1] = X. Let $h_n : Z \to Y$ be the restriction of f_n to [0,1) = Z.
 - (a) Does the sequence h_n converge for the uniform metric D on the set C(X,Y) of continuous functions from X to Y. (Here, $D(f,g) = \sup_{x \in X} |g(x) f(x)|$).
 - (b) Does the sequence q_n converge pointwise?
 - (c) Does the sequence g_n converge in the compact open topology on C(X,Y)?
 - (d) Does the sequence h_n converge in the compact open topology on C(Z,Y)?
- 5. Let (M, d) be a metric space and suppose K and H are subsets of M. For $x \in M$, define $d(x, k) = \inf_{y \in K} d(x, y)$ and define $d(H, K) = \inf_{x \in H} d(x, K)$.
 - (a) Prove that if K is closed and H is compact, then d(H, K) = 0 if and only if $H \cap K \neq \emptyset$.

- (b) Show by the way of an example that if K and H are closed in M, then it is possible for $H \cap K = \emptyset$ and d(H,K) = 0. (Hint: Find and example where $M = \mathbb{R}^2$.)
- 6. Let $X = \mathbb{R}^n / \sim$ be the quotient of \mathbb{R}^n by the equivalence relation: $x \sim y$ if the difference vector x y has integer coordinates. Show that:
 - (a) X is connected.
 - (b) X is compact.
 - (c) X is Hausdorff.
- 7. Let X be a metric space.
 - (a) Show that X has a countable dense subset if and only if X has a countable base for its topology.
 - (b) Suppose that X is compact. Show that both conditions from part (a) hold (you only need to show one!).