UNIVERSITY OF MASSACHUSETTS

Department of Mathematics and Statistics Advanced Exam - Probability and Mathematical Statistics Wednesday, August 28, 2013

Seventy points are required to pass, and at least twenty-five must come from both the probability section (problems 1-3) and the multivariate / linear models section (problems 4-5).

- 1. Assume that $\phi(t)$ is the characteristic function of a random variable X. (20 points)
 - (a) Prove that $|\phi(t)|^2$ is also the characteristic function of a random variable.
 - (b) Assume that $\phi'(t)$ exists for all t in some neighborhood of 0, and

$$\lim_{t \to 0} \frac{\phi(t) - 1}{t^2} = \frac{1}{2}\sigma^2 < \infty$$

Prove that E(X) = 0 and $E(X^2) = \sigma^2$.

- 2. Let (Ω, \mathcal{F}, P) be a probability space. Assume all random variables we consider here have finite expectations. Let $\mathcal{D} = (D_1, D_2, \cdots)$ be the countable partition of Ω , such that $P(D_n) > 0$, for any $n \geq 1$, $D_n \cap D_m = \emptyset$, for any $m \neq n$. Let $\mathcal{G} = \sigma(\mathcal{D})$ be the smallest σ -algebra generated by \mathcal{D} . Consider the following questions. (25 points)
 - (a) If $X \in \mathcal{F}$, write the explicit expression of $E(X|\mathcal{G})$.
 - (b) If $Y \in \mathcal{D}$, what is $E(XY|\sigma(\mathcal{D}))$?
 - (c) Let \mathcal{D}_1 be another countable partition of Ω defined similar as \mathcal{D} , such that \mathcal{D}_1 is coarser than \mathcal{D} . i.e. for any $D \in \mathcal{D}_1$, there exists A_1, A_2, \dots, A_n in \mathcal{D} , such that $D = A_1 \cup A_2 \cup \dots \cup A_n$. Find $E(E(X|\sigma(\mathcal{D}))|\sigma(\mathcal{D}_1))$ and $E(E(X|\mathcal{D}_1)|\sigma(\mathcal{D}))$?
 - (d) Show that if X and Y are random variables with $E(Y|\mathcal{G}) = X$ and $E(Y^2) = E(X^2) < \infty$, then X = Y a.s.
- 3. Prove that the sum of two independent normal random variables is a normal variable. More precisely, if $X \sim N(\mu_1, \sigma_1^2)$, $Y \sim N(\mu_2, \sigma_2^2)$ are independent, then $X + Y \sim N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$. (5 points)
- 4. Let Y and X both be random variables. A linear predictor of Y from X is a function of the form $\beta_0 + \beta_1 X$, and we define the best linear predictor to be one that minimizes $E\{Y (\beta_0 + \beta_1 X)\}^2$. (25 points)
 - (a) Derive the best linear predictor of Y from X.
 - (b) Let \widehat{Y}^{LIN} be the best linear predictor. Show that it unbiased for Y.
 - (c) Derive the squared prediction error, $E(Y \hat{Y}^{LIN})^2$.

- (d) Suppose that the random vector (Y, X) has a multivariate normal distribution with mean μ_y, μ_x and covariance matrix $\begin{pmatrix} \sigma_y^2 & \sigma_{yx} \\ \sigma_{yx} & \sigma_x^2 \end{pmatrix}$. How do your answers above relate to this distribution?
- 5. Suppose $Y = X\beta + \varepsilon$ when Y is a random vector of length n, X is n by p matrix with rank p, β is a vector of length p, and ε is a random n vector with independent $N(0, \sigma^2)$ components. (25 points)
 - (a) Derive the maximum likelihood estimators of β and σ^2 .
 - (b) Let $\hat{\beta}$ be your estimator for β from part (a). Derive its sampling distribution.
 - (c) Let $\hat{\sigma}^2$ be your estimator for σ^2 from part (a). Derive the sampling distribution of $n\hat{\sigma}^2/\sigma^2$.
 - (d) Show that $\hat{Y} = X\hat{\beta}$ and $R = Y \hat{Y}$ are independent.
 - (e) Are $\hat{\beta}$ and $\hat{\sigma}^2$ independent? Why or why not?