UNIVERSITY OF MASSACHUSETTS
Department of Mathematics and Statistics
Advanced Exam - Probability and Mathematical Statistics
Wednesday, August 28, 2013

Seventy points are required to pass, and at least twenty-five must come from both the probability section (problems 1-3) and the multivariate / linear models section (problems 4-5).

1. Assume that $\phi(t)$ is the characteristic function of a random variable X. (20 points)
(a) Prove that $|\phi(t)|^{2}$ is also the characteristic function of a random variable.
(b) Assume that $\phi^{\prime}(t)$ exists for all t in some neighborhood of 0 , and

$$
\lim _{t \rightarrow 0} \frac{\phi(t)-1}{t^{2}}=\frac{1}{2} \sigma^{2}<\infty
$$

Prove that $E(X)=0$ and $E\left(X^{2}\right)=\sigma^{2}$.
2. Let (Ω, \mathcal{F}, P) be a probability space. Assume all random variables we consider here have finite expectations. Let $\mathcal{D}=\left(D_{1}, D_{2}, \cdots\right)$ be the countable partition of Ω, such that $P\left(D_{n}\right)>0$, for any $n \geq 1, D_{n} \cap D_{m}=\emptyset$, for any $m \neq n$. Let $\mathcal{G}=\sigma(\mathcal{D})$ be the smallest σ-algebra generated by \mathcal{D}. Consider the following questions. (25 points)
(a) If $X \in \mathcal{F}$, write the explicit expression of $E(X \mid \mathcal{G})$.
(b) If $Y \in \mathcal{D}$, what is $E(X Y \mid \sigma(\mathcal{D}))$?
(c) Let \mathcal{D}_{1} be another countable partition of Ω defined similar as \mathcal{D}, such that \mathcal{D}_{1} is coarser than \mathcal{D}. i.e. for any $D \in \mathcal{D}_{1}$, there exists $A_{1}, A_{2}, \cdots, A_{n}$ in \mathcal{D}, such that $D=A_{1} \cup A_{2} \cup \cdots \cup A_{n}$. Find $E\left(E(X \mid \sigma(\mathcal{D})) \mid \sigma\left(\mathcal{D}_{1}\right)\right)$ and $E\left(E\left(X \mid \mathcal{D}_{1}\right) \mid \sigma(\mathcal{D})\right)$?
(d) Show that if X and Y are random variables with $E(Y \mid \mathcal{G})=X$ and $E\left(Y^{2}\right)=$ $E\left(X^{2}\right)<\infty$, then $X=Y$ a.s.
3. Prove that the sum of two independent normal random variables is a normal variable. More precisely, if $X \sim N\left(\mu_{1}, \sigma_{1}^{2}\right), Y \sim N\left(\mu_{2}, \sigma_{2}^{2}\right)$ are independent, then $X+Y \sim$ $N\left(\mu_{1}+\mu_{2}, \sigma_{1}^{2}+\sigma_{2}^{2}\right) .(5$ points $)$
4. Let Y and X both be random variables. A linear predictor of Y from X is a function of the form $\beta_{0}+\beta_{1} X$, and we define the best linear predictor to be one that minimizes $E\left\{Y-\left(\beta_{0}+\beta_{1} X\right)\right\}^{2} .(25$ points $)$
(a) Derive the best linear predictor of Y from X.
(b) Let $\widehat{Y}^{L I N}$ be the best linear predictor. Show that it unbiased for Y.
(c) Derive the squared prediction error, $E\left(Y-\widehat{Y}^{L I N}\right)^{2}$.
(d) Suppose that the random vector (Y, X) has a multivariate normal distribution with mean μ_{y}, μ_{x} and covariance matrix $\left(\begin{array}{cc}\sigma_{y}^{2} & \sigma_{y x} \\ \sigma_{y x} & \sigma_{x}^{2}\end{array}\right)$. How do your answers above relate to this distribution?
5. Suppose $Y=X \beta+\varepsilon$ when Y is a random vector of length n, X is n by p matrix with rank p, β is a vector of length p, and ε is a random n vector with independent $N\left(0, \sigma^{2}\right)$ components. (25 points)
(a) Derive the maximum likelihood estimators of β and σ^{2}.
(b) Let $\hat{\beta}$ be your estimator for β from part (a). Derive its sampling distribution.
(c) Let $\hat{\sigma}^{2}$ be your estimator for σ^{2} from part (a). Derive the sampling distribution of $n \hat{\sigma}^{2} / \sigma^{2}$.
(d) Show that $\hat{Y}=X \hat{\beta}$ and $R=Y-\hat{Y}$ are independent.
(e) Are $\hat{\beta}$ and $\hat{\sigma}^{2}$ independent? Why or why not?

