UNIVERSITY OF MASSACHUSETTS

Department of Mathematics and Statistics ADVANCED EXAM - Mathematical Statistics and Probability January 16, 2013

70 points are required to pass with at least 25 points from each part; Part 1 = probability (questions 1-3) and Part 2 = Multivariate/Linear Models (questions 3 and 4).

Probability Theory

- 1. (a) (20 PTS). Prove the first Borel-Cantelli Lemma: If $\{A_n\}$ is a sequence of events in a probability space (Ω, P) with $\sum_{n=1}^{\infty} P(A_n) < \infty$, then $P(\limsup A_n) = P(A_n i.o) = 0$.
 - (b) Use the above lemma to prove the Strong law of large numbers: If $\{X_n\}$ are i.i.d with $E(X_i = 0)$ and $E(X_i^4) < \infty$ and $S_n = X_1 + \cdots + X_n$, then $S_n/n \to 0$ a.s. (almost surely).
- 2. (15 PTS).
 - (a) Suppose X_1, \ldots, X_n are independent positive random variables on Ω , with finite expectations. Prove $E(\prod_{i=1}^n X_i) = \prod_{i=1}^n E(X_i)$.
 - (b) Provide an example of two dependent random variables X and Y, such that E(XY) = E(X)E(Y).
- 3. (15 PTS). Let S_n be an i.i.d. sequence $\{X_n\}$ with mean μ and variance σ^2 . Let N be a random variable that is independent of all the X_n and takes on the values $1, 2, 3, \cdots$. Let $S_N = \sum_{i=1}^N X_i$. Note that the number of terms is random.
 - a) Find $E[S_N|N]$ and $E[S_N^2|N]$.
 - b) Now find $E(S_N)$ and $E(S_N^2)$ with your answers given in terms of μ , σ^2 and the mean and variance of N.

In each case explain how you arrive at your answer.

Multivariate distribution theory/Linear Models

- 4. (30 PTS) Consider \mathbf{Y} ($n \times 1$) distributed multivariate normal with mean $\boldsymbol{\mu}$ and covariance matrix $\boldsymbol{\Sigma}$.
 - (a) State what the moment generating function of Y is.
 - (b) Using moment generating functions, **derive** the distribution of a'Y, where a is a $n \times 1$ vector of constants.
 - (c) Derive $E(\mathbf{Y}'\mathbf{A}\mathbf{Y})$ where \mathbf{A} is a symmetric matrix. Your answer should involve $\boldsymbol{\mu}$, $\boldsymbol{\Sigma}$ and \mathbf{A} .
 - (d) Now suppose

$$\left[\begin{array}{c} \mathbf{Y}_1 \\ \mathbf{Y}_2 \end{array}\right] \sim N(\left[\begin{array}{c} \boldsymbol{\mu}_1 \\ \boldsymbol{\mu}_2 \end{array}\right], \left[\begin{array}{cc} \boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\ \boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22} \end{array}\right]).$$

Define $\mathbf{W} = (\mathbf{Y}_1 - \boldsymbol{\mu}_1) - \Sigma_{12} \Sigma_{22}^{-1} (\mathbf{Y}_2 - \boldsymbol{\mu}_2).$

- i. Show $\mathbf{W} \sim N(\mathbf{0}, \Sigma_{11} \Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21}).$
- ii. Show $Cov(\mathbf{W}, \mathbf{Y}_2) = \mathbf{0}$.
- iii. Give the conditional distribution of \mathbf{W} given $\mathbf{Y}_2 = \mathbf{c}$ but WITHOUT doing it by writing out the joint distribution of \mathbf{W} and \mathbf{Y}_2 and using conditional distributions for the multivariate normal. Hint: Make use of the previous result about \mathbf{Y}_2 and \mathbf{W} ? Explain your answer.
- 5. (20 PTS) Let **Z** $(n \times 1)$ have a standard multivariate normal distribution. Let **A** $(n \times n)$ be symmetric and idempotent with rank $p \leq n$.
 - (a) Prove that $\mathbf{Z}'\mathbf{A}\mathbf{Z}$ has the same distribution as $U = \mathbf{Z}'_1\mathbf{Z}_1$ where \mathbf{Z}_1 $(p \times 1)$ has a standard multivariate normal distribution.
 - (b) Show that the moment generating function of U is $m_U(t) = (1 2t)^{-p/2}, 1 2t > 0$. What is U's distribution?
 - (c) Find a non-trivial $k \times n$ matrix **B** (i.e., **B** not **0**) so that **BZ** and **Z'AZ** are independent. (For full credit, you are asked to find a **B** and prove independence.)