NAME:

Advanced Analysis Qualifying Examination Department of Mathematics and Statistics University of Massachusetts

Monday, August 26, 2013

Instructions

- 1. This exam consists of eight (8) problems all counted equally for a total of 100%.
- 2. You are encouraged to try to solve every problem; there is no penalty for incorrect answers.
- 3. In order to pass this exam, it is enough that you solve essentially correctly at least five (5) problems and that you have an overall score of at least 65%.
- 4. State explicitly all results that you use in your proofs and verify that these results apply.
- 5. Please write your work and answers <u>clearly</u> in the blank space under each question.

Conventions

- 1. For a set A, 1_A denotes the indicator function or characteristic function of A.
- 2. If a measure is not specified, use Lebesgue measure on \mathbb{R} . This measure is denoted by m.
- 3. If a σ -algebra on IR is not specified, use the Borel σ -algebra.

- 1. (a) Let $f: \mathbb{R} \to \mathbb{R}$ be a function. Define the concept that f is convex on \mathbb{R} .
 - (b) Let μ be a Borel measure on $I\!\!R$ such that $\int_{I\!\!R}e^{tx}\mu(dx)<\infty$ for all $t\in I\!\!R$. Prove that

$$c(t) = \log \int_{\mathbb{R}} e^{tx} \mu(dx)$$

is a convex function on $I\!\!R$.

Hint: Use Hölder's inequality.

(c) Prove that c'(t) exists and that

$$c'(t) = \frac{\int_{\mathbb{R}} x e^{tx} \mu(dx)}{\int_{\mathbb{R}} e^{tx} \mu(dx)}.$$

Justify all the steps carefully.

2. (a) Let $f \in L^1(I\!\!R,m)$ be an integrable function, and define $f_h(x) = f(x-h)$ for $h \in I\!\!R$. Show that

$$\lim_{h \to 0} \|f_h - f\|_{L^1} = 0.$$

(b) Give an example of a sequence $\{f_n\}$ such that $f_n\in L^1([0,1],m)$ and

$$\lim_{n\to\infty} \|f_n - f\|_{L^1} = 0$$

but $f_n(x)$ converges for no $x \in [0, 1]$.

Hint. Let $f_n = 1_{A_n}$ for appropriate sets A_n .

3. Let $C_{\mathrm{per}}(I\!\!R)$ denote the Banach space of bounded, continuous, real-valued functions on $I\!\!R$ which are periodic of period 2 with the norm $\|f\| = \sup_{|x| \le 1} |f(x)|$.

For $n \in \mathbb{N}$ let k_n be a non-negative function in $C_{\mathrm{per}}(\mathbb{R})$, and for $g \in C_{\mathrm{per}}(\mathbb{R})$ define

$$S_n g(x) = \int_{-1}^1 k_n(y) g(x+y) \, dy$$
.

- (a) Prove that S_n defines a bounded linear operator from $C_{\rm per}(I\!\! R)$ into $C_{\rm per}(I\!\! R)$.
- (b) Assume that for every $n\in I\!\!N$ we have $\int_{-1}^1 k_n(y)dy=1$ and that for each $\delta>0$

$$\lim_{n \to \infty} \sup_{\delta \le |y| \le 1} k_n(y) = 0$$

Prove that

$$\lim_{n\to\infty} \|S_n - \mathbf{I}\| = 0,$$

where I is the identity operator; i.e., If = f for $f \in C_{per}(I\!\! R)$.

4. Compute the following Lebesgue-Stieljes integral

$$\int_{[-2,2]} x^2 dF(x) \,,$$

where

$$F(x) = \begin{cases} x+2 & \text{if } -2 \le x \le -1\\ 2 & \text{if } -1 < x < 0\\ x^2 + 5 & \text{if } 0 \le x \le 2 \end{cases}$$

- 5. Let H be a real, inner product space with inner product $\langle \cdot, \cdot \rangle$, and define $\|x\| = \sqrt{\langle x, x \rangle}$.
 - (a) Prove the Cauchy-Schwartz inequality relating $x,y\in H.$
 - (b) Prove that ||x|| defines a norm.
 - (c) Show that equality holds in the Cauchy-Schwartz inequality if and only if ax+by=0 for some $a,b\in I\!\!R$.

- 6. Let H be a Hilbert space with inner product $\langle \cdot, \cdot \rangle$ and norm ||x||. Define L(H, H) to be the set of bounded linear operators mapping H into H. Let T be an operator in L(H, H).
 - (a) Show that there exists a unique operator $T^* \in L(H,H)$ such that

$$\langle Tx, y \rangle = \langle y, T^*x \rangle$$

for all $x, y \in H$.

Hint: Use the Riesz representation theorem.

(b) Show the following formula for the operator norm ||T|| of an operator $T \in L(H, H)$:

$$||T|| = \sup_{||x||=1, ||y||=1} |\langle Tx, y \rangle|$$
.

(c) Use part (b) to prove that $||T|| = ||T^*||$.

- 7. Let (X, \mathcal{M}, μ) be a measure space, and for $1 \le p \le \infty$ consider the Banach spaces $L^p(X, \mu)$ and $L^q(X, \mu)$, where q is the conjugate exponent to p; i.e. $\frac{1}{p} + \frac{1}{q} = 1$.
 - (a) Prove that for $1 and <math>f \in L^p(X, \mu)$ we have

$$||f||_{L^p} = \sup_{||g||_{L^q}=1} \left| \int fg d\mu \right|.$$

(b) Let $(X_1, \mathcal{M}_1, \mu_1)$ and $(X_2, \mathcal{M}_2, \mu_2)$ two σ -finite measure spaces, and let $f(x_1, x_2)$ be a measurable, non-negative function on $X_1 \times X_2$. Prove that for 1

$$\left\| \int f(x_1, x_2) d\mu_2(x_2) \right\|_{L^p(X_1, \mu_1)} \le \int \| f(x_1, x_2) \|_{L^p(X_1, \mu_1)} d\mu_2(x_2) .$$

This inequality is known as the Minkowski inequality for integrals. *Hint:* Use part (a) and Hölder's inequality.

8. For $-\infty < a < b < \infty$ let $f_n: (a,b) \to I\!\!R$ be a sequence of functions, each of which is a monotonically increasing function; i.e., if x < y, then $f_n(x) \le f_n(y)$. Suppose that f_n converges to some f almost everywhere with respect to Lebesgue measure. Show that f_n converges to f at all points where f is continuous.

Hint. Approximate any point of continuity of f by sequences lying in the set $\{f_n \to f\}$.