NAME:

Advanced Analysis Qualifying Examination Department of Mathematics and Statistics University of Massachusetts

Wednesday, August 29, 2012

Instructions

- 1. This exam consists of eight (8) problems all counted equally for a total of 100%.
- 2. You are encouraged to try to solve every problem; there is no penalty for incorrect answers.
- 3. In order to pass this exam, it is enough that you solve essentially correctly at least five (5) problems and that you have an overall score of at least 65%.
- 4. State explicitly all results that you use in your proofs and verify that these results apply.
- 5. Please write your work and answers <u>clearly</u> in the blank space under each question.

Conventions

- 1. For a set A, 1_A denotes the indicator function or characteristic function of A.
- 2. If a measure is not specified, use Lebesgue measure on \mathbb{R} . This measure is denoted by m.
- 3. If a σ -algebra on \mathbb{R} is not specified, use the Borel σ -algebra.

- 1. Let (X, \mathcal{M}, μ) be a measure space and let $\{A_n\}_{n \in \mathbb{N}}$ be a sequence of measurable subsets of X.
 - (a) Define $\limsup_{n\to\infty} A_n$ and $\liminf_{n\to\infty} A_n$ in terms of appropriate unions and intersections.
 - (b) Prove that $x \in \liminf_{n \to \infty} A_n$ if and only if x lies in all but finitely many A_n and that $x \in \limsup_{n \to \infty} A_n$ if and only if x lies in infinitely many A_n .
 - (c) Prove that $\mu(\liminf_{n \to \infty} A_n) \leq \liminf_{n \to \infty} \mu(A_n).$
 - (d) Prove that if $\sum_{n=1}^{\infty} \mu(A_n) < \infty$, then $\mu(\limsup_{n \to \infty} A_n) = 0$.

2. Let (X, \mathcal{M}, μ) be a measure space, $\{f_n\}_{n \in \mathbb{N}}$ a sequence of measurable functions taking values in [0, 1], and f a measurable function taking values in [0, 1]. We say that f_n converges to f in distribution if

$$\lim_{n \to \infty} \int_X g \circ f_n \, d\mu \, = \, \int_X g \circ f \, d\mu$$

- for all continuous functions $g:[0,1] \to \mathbb{R}$.
- (a) State the definition that " f_n converges to f in measure."
- (b) Show that if f_n converges to f in measure, then f_n converges to f in distribution.

3. Let μ_F and μ_G be finite Borel measures on \mathbb{R} with the respective distribution functions F and G; i.e., they are the unique Borel measures such that for any interval (a, b]

$$\mu_F((a,b]) = F(b) - F(a), \quad \mu_G((a,b]) = G(b) - G(a).$$

Let $\mu_F \star \mu_G$ denote the Borel measure with distribution function given by the convolution

$$F \star G(x) = \int_{-\infty}^{\infty} F(x-y) \,\mu_G(dy).$$

(a) Prove that for any Borel set B

$$\mu_F \star \mu_G(B) = \int_{\mathbb{R}} \mu_F(B - y) \, \mu_G(dy),$$

where $B - y = \{x \in \mathbb{R} : x = b - y \text{ for some } b \in B\}$ is the translate of the set B. (b) Prove that if g is a nonnegative Borel measurable function on \mathbb{R} , then

$$\int_{\mathbb{R}} g(x) \,\mu_F \star \mu_G(dx) = \int_{\mathbb{R}} \int_{\mathbb{R}} g(x+y) \,\mu_F(dx) \,\mu_G(dy).$$

- 4. Let [a,b] be a finite interval and $F:[a,b] \to \mathbb{R}$ a function.
 - (a) State the definition that "F is of bounded variation."
 - (b) Show that if F is increasing and bounded, then F is of bounded variation.

(c) Show that F is of bounded variation if and only if $F = G_1 - G_2$, where G_1 and G_2 are increasing and bounded.

5. For each j = 1, 2, let (X_j, \mathcal{M}_j) be a measurable space and let μ_j and ν_j be σ -finite measures on (X_j, \mathcal{M}_j) such that $\nu_j \ll \mu_j$.

(a) For $E \in \mathcal{M}_1 \otimes \mathcal{M}_2$ define

$$\alpha(E) = \int_E \left(\frac{d\nu_1}{d\mu_1}(x_1) \cdot \frac{d\nu_2}{d\mu_2}(x_2) \right) d(\mu_1 \times \mu_2)(x_1, x_2).$$

Prove that α is a measure on $\mathcal{M}_1 \otimes \mathcal{M}_2$ and that $\alpha = \nu_1 \times \nu_2$.

(b) Prove that $\nu_1 \times \nu_2 \ll \mu_1 \times \mu_2$ and that

$$\frac{d(\nu_1 \times \nu_2)}{d(\mu_1 \times \mu_2)}(x_1, x_2) = \frac{d\nu_1}{d\mu_1}(x_1) \cdot \frac{d\nu_2}{d\mu_2}(x_2).$$

- 6. Let (X, \mathcal{M}, μ) be a measure space with μ a σ -finite measure and let $f \in L^1(\mu)$ be a nonnegative function.
 - (a) Show that

$$(\mu \times m) \Big\{ (x,y) \in X \times \mathbb{R} \, : \, 0 \le f(x) \le y \Big\} \, = \, \int_X f d\mu;$$

- i.e., the integral of f equals the area under the graph of f.
- (b) Show that

$$(\mu \times m) \Big\{ (x, y) \in X \times \mathbb{R} : f(x) = y \Big\} = 0;$$

i.e., the measure of the graph of f equals 0.

7. Let (X, \mathcal{M}, μ) be a measure space and 0 . Define

$$L^{p}(\mu) = \left\{ f : X \to \mathbb{C} : f \text{ measurable }, \int_{X} |f|^{p} d\mu < \infty \right\}$$

and, as usual, identify two functions f and g if $f=g\ \mu\text{-almost everywhere.}$

(a) Show that if $1 \le p < \infty$, then $||f||_p \equiv (\int_X |f|^p d\mu)^{1/p}$ defines a norm on $L^p(\mu)$. *Hint:* Use Hölder's inequality.

- (b) Show that if $0 , then <math>d(f,g) = \int_X |f g|^p d\mu$ defines a metric on $L^p(\mu)$.
- (c) Show that if $1 , then <math>d(f,g) = \int_X |f g|^p d\mu$ does <u>not</u> define a metric on $L^p(\mu)$.

8. Suppose that \mathcal{H} is an infinite-dimensional Hilbert space.

(a) Show that there exists a sequence $\{f_n\}_{n\in\mathbb{N}}$ with $||f_n|| = 1$ such that $\{f_n\}$ has no convergent subsequence.

(b) Show that for any sequence $\{f_n\}_{n\in\mathbb{N}}$ with $||f_n|| = 1$ there exists a subsequence $\{f_{n_k}\}_{k\in\mathbb{N}}$ and $f \in \mathcal{H}$ such that

$$\lim_{k \to \infty} \langle f_{n_k} \,, \, g \rangle \,=\, \langle f \,, \, g \rangle$$

for all $g \in \mathcal{H}$.

Hint: Let g run through a basis of \mathcal{H} and use a diagonalization argument. Express f in terms of the basis.