NAME:

Advanced Analysis Qualifying Examination Department of Mathematics and Statistics University of Massachusetts

Tuesday, January 17, 2012

Instructions

- 1. This exam consists of eight (8) problems all counted equally for a total of 100%.
- 2. You are encouraged to try to solve every problem; there is no penalty for incorrect answers.
- 3. In order to pass this exam, it is enough that you solve essentially correctly at least five (5) problems and that you have an overall score of at least 65%.
- 4. State explicitly all results that you use in your proofs and verify that these results apply.
- 5. Please write your work and answers <u>clearly</u> in the blank space under each question.

Conventions

- 1. For a set A, 1_A denotes the indicator function or characteristic function of A.
- 2. If a measure is not specified, use Lebesgue measure on \mathbb{R} . This measure is denoted by m.
- 3. If a σ -algebra on IR is not specified, use the Borel σ -algebra.

1. Let (X, \mathcal{M}, μ) be a measure space. Let $\overline{\mathcal{M}}$ be the collection of sets of the form $E \cup Z$ where $E \in \mathcal{M}$ and $Z \subset F$ for some $F \in \mathcal{M}$ with $\mu(F) = 0$. Define $\overline{\mu}$ on $\overline{\mathcal{M}}$ by

$$\overline{\mu}(E \cup Z) = \mu(E)$$

- (a) Show that $\overline{\mathcal{M}}$ is the smallest σ -algebra which contains \mathcal{M} and all subsets of elements of \mathcal{M} of measure 0.
- (b) Show that $\overline{\mu}$ is measure on $\overline{\mathcal{M}}$ and this measure is complete, i.e., every subset of a set of $\overline{\mu}$ measure 0 is measurable.

2. Let $f: I\!\!R \to I\!\!R$ be a measurable function such that, for all $a \in I\!\!R$, we have

$$\int_{[0,a]} f dm = 0.$$

Show that f(x) = 0 for m almost every x.

3. (a) Let X_1, X_2 be two spaces equipped with σ -algebras \mathcal{M}_1 , \mathcal{M}_2 respectively. Suppose that the function $f: X_1 \to I\!\!R$ is \mathcal{M}_1 -measurable. Show the function $F: X_1 \times X_2 \to I\!\!R$ given by

$$F(x_1, x_2) = f(x_1),$$

is $\mathcal{M}_1 \times \mathcal{M}_2$ measurable where $\mathcal{M}_1 \times \mathcal{M}_2$ denotes the product σ - algebra.

(b) Let (X, \mathcal{M}, μ) be a measure space and let $f: X \to I\!\!R$ be a nonnegative integrable function. Show that

$$\int f \, d\mu = \mu \times m \left(\left\{ (x, t) \in X \times \mathbb{R}, 0 \le t \le f(x) \right\} \right) \,. \tag{1}$$

Hint: To show that the set on the r.h.s. of (1) is measurable, use part (a).

4. Let $f: I\!\!R \to I\!\!R$ be a Lebesgue integrable function and let $g: I\!\!R \to I\!\!R$ be a bounded measurable function. Show that

$$\lim_{t\to 0} \int f(x) \left(g(x) - g(x+t)\right) dm = 0.$$

5. Let \mathcal{H} be a real Hilbert space with inner product (x,y) and let $B: \mathcal{H} \times \mathcal{H} \to I\!\!R$ be a bilinear functional, i.e., B(x,y) is linear in the variables x and y separately. Assume that there exist constants K>0 and d>0 such that B satisfies the following inequalities:

$$|B(x,y)| \le K||x||||y||, \text{ for all } x,y \in \mathcal{H}$$
 (2)

$$B(x,x) \ge d||x||^2$$
, for all $x \in \mathcal{H}$ (3)

- (a) Show that for each $z \in \mathcal{H}$ there is a uniquely determined $y \in \mathcal{H}$ such that (y, x) = B(z, x) for all $x \in \mathcal{H}$.
- (b) Prove that if the correspondence in part (a) is denoted by y = Az, then A is a bounded linear operator on \mathcal{H} that is 1-1 and which has closed range, i.e., the subspace $\mathcal{R} = A(\mathcal{H})$ is a closed subspace of \mathcal{H} .
- (c) Prove that $\mathcal{R} = \mathcal{H}$, and that for any bounded linear functional F on \mathcal{H} there exists a unique $z \in \mathcal{H}$ such that F(x) = B(z, x) for all $x \in \mathcal{H}$.

- 6. (a) For any given p on $1 \le p < \infty$, find an example of an *unbounded* continuous function in $L^p(\mathbb{R})$.
 - (b) Show that if $1 \le p < \infty$ and $f \in L^p(I\!\!R)$ is a function that is uniformly continuous on $I\!\!R$, then $\lim_{x \to \pm \infty} f(x) = 0$.

7. Let $\mathcal X$ be a Banach space and let $T:\mathcal X\to\mathcal X$ be a bounded linear operator with ||T||<1, where

$$||T|| = \sup_{x \neq 0} \frac{||Tx||}{||x||}.$$

Prove that the operator I - T has a bounded inverse, and that

$$||(I-T)^{-1}|| \le \frac{1}{1-||T||}$$

- 8. For a function $g:[0,1]\to I\!\!R$ let us by denote by $TV_0^1(g)$ the total variation of g on $0\le x\le 1$. Suppose that $f_n(x)$ is a sequence of functions of bounded variation on $0\le x\le 1$ such that
 - (a) There exists $M < \infty$ such that $TV_0^1(f_n) \le M$ for all n.
 - (b) $\lim_{n\to\infty} f_n(x) = f(x)$ pointwise on $0 \le x \le 1$.

Prove that the limit function f has bounded variation and, in particular, that

$$TV_0^1(f) \le \liminf_n TV_0^1(f_n).$$