NAME:

Advanced Analysis Qualifying Examination Department of Mathematics and Statistics University of Massachusetts

Friday, September 2, 2011

Instructions

- 1. This exam consists of eight (8) problems all counted equally for a total of 100%.
- 2. You are encouraged to try to solve every problem; there is no penalty for incorrect answers.
- 3. In order to pass this exam, it is enough that you solve essentially correctly at least five (5) problems and that you have an overall score of at least 65%.
- 4. State explicitly all results that you use in your proofs and verify that these results apply.
- 5. Please write your work and answers <u>clearly</u> in the blank space under each question.

Conventions

- 1. For a set A, 1_A denotes the indicator function or characteristic function of A.
- 2. If a measure is not specified, use Lebesgue measure on \mathbb{R} . This measure is denoted by m.
- 3. If a σ -algebra on \mathbb{R} is not specified, use the Borel σ -algebra.

- 1. (a) Let $A \subset \mathbb{R}$ be an arbitrary subset of the real line (not necessarily Lebesgue measurable) and let $m^*(A)$ denote the exterior (or outer) measure of A. Show that there exists a Lebesgue measurable set $B \subset \mathbb{R}$ such that $A \subset B$ and $m(B) = m^*(A)$.
 - (b) Prove that the Lebesgue exterior (or outer) measure is continuous from below. In other words, if $\{A_n\}_{n\geq 1}$ is increasing sequence of sets, i.e., $A_1\subset A_2\subset \cdots \subset \mathbb{R}$, prove that

$$m^* \left(\bigcup_{n=1}^{\infty} A_n \right) = \lim_{n \to \infty} m^*(A_n).$$

Hint: Use part (a). You may use that m is continuous from below.

2. Suppose $f_n: \mathbb{R} \to \mathbb{R}$, $n=1,2,3,\cdots$ is a sequence of measurable functions such that f_n converges to f for every $x \in \mathbb{R}$. Show that f is a measurable function.

- 3. (a) Let $f:[a,b]\to\mathbb{R}$ be Lebesgue integrable. Show the absolute continuity of the integral, i.e., show that for any $\varepsilon>0$ there exists $\delta>0$ such that for any measurable set $A\subset[a,b]$ with $m(A)\leq\delta$ we have $|\int_A fdm|\leq\varepsilon$.
 - (b) Let $f:[a,b]\to\mathbb{R}$ be Lebesgue integrable and let $F:[a,b]\to\mathbb{R}$ be the function given by

$$F(x) = \int_{[a,x]} f dm.$$

Show that F is continuous and of bounded variation.

- 4. Let $(\mathcal{X}, \|\cdot\|)$ be a Banach space and let $T: \mathcal{X} \to \mathcal{X}$ be a linear map. The map T is called bounded if T maps the bounded sets of \mathcal{X} into bounded sets in \mathcal{X} .
 - (a) Prove that the linear map T is bounded if and only if there exists a constant C>0 such that $\|Tx\|\leq C\|x\|$ for all $x\in\mathcal{X}$
 - (b) Prove that the linear map T is bounded if and only if T is continuous.

5. Let $([0,1],\mathcal{B})$ be the unit interval with the Borel σ -algebra. Let M([0,1]) be the space of real finite measures $\mu:\mathcal{B}\to\mathbb{R}$ with the norm $\|\mu\|=|\mu|([0,1])$. The space M([0,1]) is a normed vector space (you do not need to prove this). Prove that M([0,1]) is a Banach space.

6. Let $F:\mathbb{R}\to\mathbb{R}$ be an increasing, right-continuous function, and let $\Phi:\mathbb{R}\to\mathbb{R}$ be a continuous increasing invertible function. Let μ_F and $\mu_{F\circ\Phi}$ be the Lebesgue-Stieljes measures associated to F and $F\circ\Phi$ respectively. Show that if $f\in L^1(\mu_F)$, then $f\circ\Phi\in L^1(\mu_{F\circ\Phi})$ and

$$\int f d\mu_F \,=\, \int f \circ \phi d\mu_{F \circ \Phi} \,.$$

Hint: It is enough to consider non-negative f and to prove the inequality $\int f \circ \Phi d\mu_{F \circ \Phi} \leq \int f d\mu_{F}$ (why?).

7. Consider the function $g: \mathbb{R}^2 \to \mathbb{R}$ given by

$$g(x,y) = \begin{cases} 2 & \text{if } 0 \le y \le x \le 1\\ 0 & \text{otherwise} \end{cases}$$

Let μ be the measure on \mathbb{R}^2 which is absolutely continuous with respect to the Lebesgue measure $m \times m$ on \mathbb{R}^2 with with Radon Nikodym derivative

$$\frac{d\mu}{d(m\times m)}=g\,.$$

Let $T:\mathbb{R}^2\to\mathbb{R}$ be the map given by T(x,y)=x and let $\tau=\mu\circ T^{-1}$ be the measure on \mathbb{R} given by

$$\tau(A) = \mu(T^{-1}(A)).$$

Find the Lebesgue decomposition of the Lebesgue measure m on \mathbb{R} with respect to τ , $m=m_{ac}+m_{sing}$ and compute the Radon-Nykodym derivative $\frac{dm_{ac}}{d\tau}$.

8. A function $f:[a,b]\to\mathbb{R}$ is convex if for all $x,y\in[a,b]$ and $0\leq t\leq 1$ we have

$$f(tx + (1-t)y) \le tf(x) + (1-t)f(y)$$
,

i.e., the graph of f lies below every one of its chords.

(a) Show that the secant lines move monotonely. In other words, prove that the slope of the secant line, i.e. the function

$$f_t(x) = \frac{f(x+t) - f(x)}{t},$$

is an increasing function of t and of x.

- (b) A function $f:[a,b]\to\mathbb{R}$ is Lipschitz continuous if there exists a constant L such that for all $x,y\in[a,b]$ we have $|f(x)-f(y)|\leq L|x-y|$. Show that if f is Lipschitz continuous then f is absolutely continuous.
- (c) By the result in (a), the left and right derivatives of a convex function f exist for all x and agree outside a countable set (you **do not** need to prove this). Show that f is convex if and only if f is absolutely continuous and f'(x) is increasing.

Hint: For the if part use the fundamental theorem of calculus for $f_t(x)$.