NAME:

Advanced Analysis Qualifying Examination Department of Mathematics and Statistics University of Massachusetts

Friday, September 3, 2010

Instructions

- 1. This exam consists of eight (8) problems all counted equally for a total of 100%.
- 2. You are encouraged to try to solve every problem; there is no penalty for incorrect answers.
- 3. In order to pass this exam, it is enough that you solve essentially correctly at least five (5) problems and that you have an overall score of at least 65%.
- 4. State explicitly all results that you use in your proofs and verify that these results apply.
- 5. Please write your work and answers <u>clearly</u> in the blank space under each question.

Conventions

- 1. For a set A, 1_A denotes the indicator function or characteristic function of A.
- 2. If a measure is not specified, use Lebesgue measure on \mathbb{R} . This measure is denoted by m.
- 3. If a σ -algebra on \mathbb{R} is not specified, use the Borel σ -algebra $\mathcal{B}(\mathbb{R})$

- 1. Let (X, \mathcal{M}) be a measurable space and let $f: X \to I\!\!R$ be a Borel-measurable function. Define $\mathcal{N}(f)$ to be the class of all sets of the form $f^{-1}(B)$ for $B \in \mathcal{B}(I\!\!R)$.
 - (a) Prove that $\mathcal{N}(f)$ is a σ -algebra.
 - (b) Let $\varphi: I\!\!R \to I\!\!R$ be a Borel measurable function. Prove that the function $\varphi \circ f$ is $\mathcal{N}(f)$ measurable.
 - (c) Let $g: X \to I\!\!R$ be a simple function of the form $\sum_{i=1}^s c_i 1_{A_i}$, where c_i are real numbers and A_i are pairwise disjoint sets in $\mathcal{N}(f)$. Prove that there exists a Borel measurable function $\varphi: I\!\!R \to I\!\!R$ such that $g = \varphi \circ f$.

2. For $x \in [0, 1]$, let

$$x = \sum_{n=1}^{\infty} \frac{a_n}{2^n}, \quad a_n \in \{0, 1\},$$

be the binary expansion of x. Let A be the set of points x which admit a binary expansion with zero in all even positions (i.e., $a_{2n}=0$ for all $n\geq 1$). Show that A is a set of Lebesgue measure 0

Hint: Write the set A has $A = \bigcap_{n=0}^{\infty} A_n$ where $A_0 = [0,1]$, the A_n are nested, i.e. $A_{n+1} \subset A_n$ and A_{n+1} is obtained from A_n by removing some of the dyadic intervals $(\frac{j}{2^n}, \frac{j+1}{2^n})$, $0 \le j \le 2^n - 1$ in A_n .

3. Let $f_n:(a,b)\to I\!\! R,\, n\ge 1$ be a sequence of functions each of which is a monotonically increasing function. Suppose the sequence f_n converges to f in Lebesgue measure on (a,b).

Show that f_n converges to f at all points in (a,b) where f is continuous.

4. Let $A \subset I\!\!R$ and $f_n: A \to I\!\!R$, for $n \geq 1$. The family of function $\{f_n\}_{n \geq 1}$ is said to be *equiintegrable* if for any $\varepsilon > 0$ there exists $\delta > 0$ such that $m(B) \leq \delta$ implies that $\int_B |f_n| dm \leq \epsilon$ for all $n \geq 1$.

Let A be a set of finite measure, $m(A) < \infty$, and let $\{f_n\}_{n \geq 1}$ be a sequence of functions such that (i) $\{f_n\}_{n \geq 1}$ is equi-integrable.

(ii) f_n converges pointwise to f Lebesgue almost everywhere in A.

Show that

$$\lim_{n\to\infty} \int_A f_n \, dm \, = \, \int f dm \, .$$

5. Let us define the Haar functions on the interval [0,1] by

$$e_0(x) = 1,$$

$$e_{n,k}(x) = \begin{cases} 2^{\frac{n}{2}} & \text{if } \frac{k-1}{2^n} \le x < \frac{k-\frac{1}{2}}{2^n} \\ -2^{\frac{n}{2}} & \text{if } \frac{k-\frac{1}{2}}{2^n} \le x < \frac{k}{2^n} \\ 0 & \text{otherwise,} \end{cases}$$

for $n=0,1,2,3,\cdots$ and $k=1,2,\cdots 2^n$. Show that the Haar functions form an orthornormal basis of the Hilbert space $L^2([0,1])$.

6. Let f be a Lebesgue integrable function on $(0,a),\,a>0$, and define

$$g(x) = \int_{x}^{a} \frac{f(t)}{t} dt, \quad 0 < x < a.$$

- (a) Show that g is Lebesgue integrable on (0, a).
- (b) Show that

$$\int_0^a g(x)dx = \int_0^a f(t)dt.$$

Justify all your work!

- 7. (a) Show that $f(x) = x^2 \cos^2(\pi/x)$ is a function of bounded variation on [0,1]. *Hint:* You may use some well-known theorem about function of bounded variation.
 - (b) Show that the function $g(y) = \sqrt{y}$ is a function of bounded variation on [0,1]. *Hint:* You may use some well-known theorem about function of bounded variation.
 - (c) Is the composition of functions of bounded variation always of bounded variation? Hint: Consider $h=g\circ f$ with f,g as in (a),(b) and use the definition of bounded variation.
 - (d) Show that if g satisfy a Lipschitz condition (i.e. there exists L>0 such that $|g(x)-g(y)|\leq L|x-y|$ for all x,y) and f is of bounded variation then $h=g\circ f$ is of bounded variation.

8. Let (X, \mathcal{M}, μ) be a measure space. Let 0 and let <math>q be such that $\frac{1}{p} + \frac{1}{q} = 1$. Show that if f and g are positive functions then

$$\int fg d\mu \, \geq \, \left(\int f^p d\mu\right)^{1/p} \left(\int g^q d\mu\right)^{1/q} \, .$$

Hint: Use Hölder inequality for suitable functions u and v.