NAME:

Advanced Analysis Qualifying Examination Department of Mathematics and Statistics University of Massachusetts

Monday, August 28, 2006

Instructions

- 1. This exam consists of eight (8) problems all counted equally for a total of 100%.
- 2. You are encouraged to try to solve every problem; there is no penalty for incorrect answers.
- 3. In order to pass this exam, it is enough that you solve essentially correctly at least five (5) problems and that you have an overall score of at least 65%.
- 4. State explicitly all results that you use in your proofs and verify that these results apply.
- 5. Please write your work and answers <u>clearly</u> in the blank space under each question.

Conventions

- 1. For a set A, 1_A denotes the indicator function or characteristic function of A.
- 2. If a measure is not specified, use Lebesgue measure on \mathbb{R} . This measure is denoted by m.
- 3. If a σ -algebra on \mathbb{R} is not specified, use the Borel σ -algebra.

- 1. Let (X, \mathcal{M}, μ) be a measure space.
 - (a) Let $\{A_n, \in \mathbb{N}\}$ be a nondecreasing sequence in \mathcal{M} ; i.e., $A_n \subset A_{n+1}$ for all n. Prove that

$$\lim_{n\to\infty}\mu(A_n)=\mu(\cup_{n\in\mathbb{N}}A_n).$$

(b) Let $\{A_n, \in \mathbb{N}\}$ be an arbitrary sequence in \mathcal{M} . Give the definition of the set $\liminf_{n \to \infty} A_n$ and prove that

$$\mu\left(\liminf_{n\to\infty} A_n\right) \le \liminf_{n\to\infty} \mu(A_n).$$

- 2. (a) State Fatou's Lemma.
 - (b) State the Dominated Convergence Theorem.
 - (c) Prove the Dominated Convergence Theorem from Fatou's Lemma. (**Hint.** Consider $g+f_n$ and $g-f_n$).

3. (a) Let (X,\mathcal{M},μ) be a measure space, $\{f_n,n\in\mathbb{N}\}$ a sequence of Borel-measurable functions mapping X into \mathbb{R} , and f a Borel-measurable function mapping X into \mathbb{R} . Assume that $f_n\to f$ in measure and that there exists $g\in L^1(\mu)$ such that $|f_n|\leq g$ for all $n\in\mathbb{N}$. Prove that $f_n\to f$ in $L^1(\mu)$; i.e., prove that

$$\lim_{n \to \infty} \int_X |f - f_n| \, d\mu = 0.$$

- (**Hint.** Work with an arbitrary subsequence of $\{f_n\}$ that converges to f in measure. Alternatively, consider a proof by contradiction.)
- (b) Give an example of a measure space (X, \mathcal{M}, μ) , a sequence $\{f_n, n \in \mathbb{N}\}$ of Borel-measurable functions mapping X into \mathbb{R} , and a Borel-measurable function f mapping X into \mathbb{R} with the following property: $f_n \to f$ in measure but f_n does not converge to f in $L^1(\mu)$.

- 4. Let (X, \mathcal{M}) and (Y, \mathcal{N}) be measurable spaces.
 - (a) State the definition of the product σ -algebra $\mathcal{M} \otimes \mathcal{N}$ on $X \times Y$.
 - (b) Let μ be a finite measure on (X,\mathcal{M}) and let ν be a finite measure on (Y,\mathcal{N}) . For $E\in\mathcal{M}\otimes\mathcal{N}$ and $x\in\mathcal{M}$, state the definition of the x-section E_x . Also state the formula expressing $\mu\times\nu(E)$ as an integral involving μ , ν , and E_x . Only state this formula; do not prove it.
 - (c) Let μ_1 and μ_2 be finite measures on (X, \mathcal{M}) and let ν_1 and ν_2 be finite measures on (Y, \mathcal{N}) . Assume that $\mu_1 \ll \mu_2$ and $\nu_1 \ll \nu_2$. Prove that $\mu_1 \times \nu_1 \ll \mu_2 \times \nu_2$. (**Hint.** Use the formula in part (b).)

5. Given $-\infty < a < b < \infty$, let I be the closed, bounded interval [a,b]. Let φ be a **convex** function mapping I into \mathbb{R} . Fixing $x_0 \in I$, define

$$h(s) = \frac{\varphi(s) - \varphi(x_0)}{s - x_0}.$$

Prove that $h(s) \leq h(t)$ for all $s \in I$ and $t \in I$ satisfying $s < t, s \neq x_0$, and $t \neq x_0$.

6. Let H be a real, separable Hilbert space with inner product $\langle \cdot, \cdot \rangle$ and norm $\| \cdot \|$, $\{e_k, k \in \mathbb{N}\}$ a countable orthonormal basis for H, x an element of H, and $\{x_n, n \in \mathbb{N}\}$ a bounded sequence in H. Thus there exists $M \in (0, \infty)$ such that $\|x_n\| \leq M$ for all n. Also let H^* denote the set of bounded linear functionals Φ mapping H into \mathbb{R} . For any $\Phi \in H^*$, prove that

$$\lim_{n\to\infty}\Phi(x_n)=\Phi(x)\ \ \text{if and only if for all}\ k\in\mathbb{N}, \\ \lim_{n\to\infty}\langle x_n,e_k\rangle=\langle x,e_k\rangle.$$

(**Hints.** In order to prove one direction of the implication, use the Riesz representation theorem, which states that for any $\Phi \in H^*$, there exists $y_\Phi \in H$ such that $\Phi(x) = \langle x, y_\Phi \rangle$ for all $x \in H$. Then approximate y_Φ by an appropriate partial sum and work with this partial sum.)

7. Let X be a Banach space with norm $\|\cdot\|$ and let E be a proper, nonempty, **closed** subspace of X. We define the following equivalence relation on X: $x \sim y$ iff $x - y \in E$. The equivalence class of $x \in X$ is denoted by x + E, and the set of equivalence classes, or quotient space, is denoted by X/E. With these definitions, X/E is a vector space (do not prove this). For $x \in X$, define

$$||x + E|| = \inf_{y \in E} ||x + y||.$$

- (a) Prove that ||x + E|| defines a norm on X/E.
- (b) Prove that X/E is complete with respect to the norm ||x + E||. (**Hint.** Use without proof the fact that a normed vector space Y is complete if and only if every absolutely convergent series in Y converges to an element in Y.)

8. Given $1 \leq p < \infty$, define ℓ^p to be the set of all real sequences $x = \{x_n, n \in \mathbb{N}\}$ satisfying

$$||x||_p = (\sum_{n \in \mathbb{N}} |x_n|^p)^{1/p} < \infty.$$

Also define ℓ^{∞} to be the set of all real sequences $x=\{x_n,n\in\mathbb{N}\}$ satisfying

$$||x||_{\infty} = \sup_{n \in \mathbb{N}} |x_n| < \infty.$$

Both ℓ^p and ℓ^∞ are normed vector spaces with respect to the norms $\|\cdot\|_p$ and $\|\cdot\|_\infty$ (do not prove this). Recall that a normed vector space is said to be separable if it contains a countable, dense set.

- (a) For any $1 \le p < \infty$, prove that ℓ^p is separable.
- (b) Prove that ℓ^{∞} is not separable. (**Hint.** Consider a proof by contradiction.)