NAME:

Advanced Analysis Qualifying Exam Department of Mathematics and Statistics University of Massachusetts at Amherst

Monday, August 25, 2003

Instructions.

- (1) This exam consists of eight (8) problems all counted equally for a total of 100%.
- (2) You are encouraged to try to solve every problem; there is no penalty for incorrect answers.
- (3) In order to pass this exam, it is enough that you solve essentially correctly at least five (5) problems and that you have an overall score of at least 65%.
- (4) State explicitly all results that you use in your proofs and verify that these results apply.
- (5) Please write your work and answers <u>clearly</u> in the blank space under each question.

Conventions.

- (1) For a set A, 1_A denotes the indicator function or characteristic function of A.
- (2) If a measure is not specified, use Lebesgue measure on \mathbb{R} . This measure is denoted by m.
- (3) If a σ -algebra on \mathbb{R} is not specified, use the Borel σ -algebra.

- 1) Let \mathcal{H} be a real Hilbert space with inner product $\langle \cdot, \cdot \rangle$ and norm $\| \cdot \|$. Let u and v be linearly independent unit vectors in \mathcal{H} . Define \mathcal{M} to be the span of u and v.
- (a) Determine a *unit* vector w such that $\langle u, w \rangle = 0$ and the span of u and w equals \mathcal{M} (make sure to verify the latter!).
- (b) Let x be an element in $\mathcal{H} \setminus \mathcal{M}$. Determine explicitly, in terms of u and w, $y_0 \in \mathcal{M}$ such that

$$||x - y_0|| = \inf\{||x - z|| : z \in \mathcal{M}\}.$$

(c) Prove that the y_0 found in (b) is unique and re-express it in terms of u and v

2) Let (X, \mathcal{M}, μ) be a σ -finite measure space. Let $f \in L^1(X)$, $f \geq 0$. Let $\lambda_f : (0, \infty) \to [0, \infty]$ be the distribution function of f; i.e.

$$\lambda_f(t) := \mu(\{x \in X : f(x) > t\})$$

- (a) Prove that $\lambda_f(t) < \infty$ for all t > 0.
- (b) Show that λ_f is decreasing and right continuous..
- (c) In light of (b), the distribution function λ_f defines a negative Borel measure ν on $(0, \infty)$ by

$$\nu((a, b]) := \lambda_f(b) - \lambda_f(a)$$
 whenever $0 < a < b$.

Moreover,

$$\int \phi d\lambda_f = \int \phi d\nu$$

is the Lebesgue -Stieljes integral of functions ϕ defined on $(0, \infty)$.

Consider ψ a nonnegative Borel measurable function on $(0,\infty)$ function and f as above. Prove the following equality

$$\int_X \psi \circ f \, d\mu = -\int_0^\infty \psi(t) \, d\lambda_f(t).$$

<u>Hint</u>. Prove it first when ψ is the characteristic of a Borel set and then suitably approximate ψ by simple functions.

3) Let \mathcal{B} be the Borel σ -algebra on \mathbb{R} and let $\mathcal{B}_2 = \mathcal{B} \otimes \mathcal{B}$ be the product σ -algebra on $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$. Using the <u>definition</u> of product σ -algebras show that the open unit disc

$$\mathcal{D} := \{ (x, y) \in \mathbb{R}^2 : x^2 + y^2 < 1 \}$$

belongs to \mathcal{B}_2 .

4) Let $f \in L^1(\mathbb{R}, m)$ and r > 0. Set

$$A_r(f)(x) := \frac{1}{2r} \int_{x-r}^{x+r} f(y) \, dy.$$

- (a) Show that $A_r(f)(x)$ is continuous in both x and r.
- (b) Show that if in addition f is continuous, then

$$\lim_{r \to 0} A_r(f)(x) = f(x).$$

(c) Show that A_r is a contraction in $L^1(\mathbb{R})$ in the sense that

$$||A_r(f)||_{L^1(\mathbb{R})} \le ||f||_{L^1(\mathbb{R})}.$$

(d) Use (b) and (c) to show that if $f \in L^1(\mathbb{R})$ then

$$\lim_{r \to 0} ||A_r(f) - f||_{L^1(\mathbb{R})} = 0.$$

<u>Hint</u>. You may use without proof the fact that $L^1(\mathbb{R})$ functions can be approximated in $L^1(\mathbb{R})$ by continuous functions.

5) Let μ be a positive Borel measure on X and let $f:X\to [0,\infty)$ be a measurable function such that

$$\int_X f \, d\mu = M \,, \qquad 0 < M < \infty.$$

Compute

$$\lim_{n \to \infty} \int_X n \log \left[1 + \left(\frac{f(x)}{n} \right)^{\alpha} \right] d\mu$$

for constant $\alpha > 0$ in the following cases.

- (a) $0 < \alpha < 1$
- (b) $\alpha = 1$
- (c) $1 < \alpha < \infty$

<u>Hint</u>. Use Fatou in (a).

6) Let $f \in L^1(\mathbb{R}, m)$ and let \hat{f} be its Fourier transform defined by

$$\hat{f}(\xi) := \int_{\mathbb{R}} f(x) e^{-i\xi x} dx$$

for all $\xi \in \mathbb{R}$.

- (a) Prove that \hat{f} is uniformly continuous on \mathbb{R} .
- (b) Assume $f \in L^1(\mathbb{R})$ satisfies

$$\int_{|x| \le N} |x| |f(x)| dx \le N^{1/2}$$

$$\int_{|x| > N} |f(x)| dx \le \frac{1}{N^{1/2}}$$

for all $0 < N < \infty$.

Show then that $\hat{f}(\xi)$ is Hölder continuous; that is, show that for all ξ and $\eta \in \mathbb{R}$

$$|\hat{f}(\xi) - \hat{f}(\eta)| \le C |\xi - \eta|^{\beta}$$

for some suitable positive constants C and β which are independent of ξ and η .

<u>Hint</u>. Obtain an estimate for $\int_{|x| \leq N} (e^{-ix\xi} - e^{-ix\eta}) f(x) dx$ and another one for $\int_{|x| > N} (e^{-ix\xi} - e^{-ix\eta}) f(x) dx$. Then optimize your choice of N to obtain the desired estimate.

(c) Now assume that in addition to having $f \in L^1(\mathbb{R}, m)$, the function xf(x) is also integrable; that is, $\int_{\mathbb{R}} |xf(x)| dx < \infty$.

Show then that \hat{f} is differentiable and moreover that

$$\frac{d}{d\xi}\hat{f}(\xi) = \widehat{(-ixf)}(\xi).$$

<u>Hint</u>. Use the Dominated Convergence Theorem.

7) Let $f:[0,1] \to [0,\infty)$ be a Lebesgue measurable function such that

$$\int_0^1 e^{[f(x)]} \ dx < \infty.$$

Define $F(s):=m(f^{-1}([s,\infty))=m(\{x\in[0,1]:f(x)\geq s\}).$ Show that

$$\lim_{s \to \infty} e^s F(s) = 0.$$

- 8) Let f and $\{f_n\}_{n\geq 1}$ be real-valued functions on the unit interval [0,1] which are measurable with respect to Lebesgue measure.
- (a) Suppose that $f_n(x) \to f(x)$ for all x in [0,1]. Show then that $\{f_n\}$ converges in measure to f. That is, show that for every $\varepsilon > 0$,

$$\lim_{n \to \infty} m(\{x \in [0,1] : |f_n(x) - f(x)| > \varepsilon\} = 0.$$

(b) Suppose that $\{f_n\}$ converges in measure to f. Show that

$$\lim_{n \to \infty} \int_0^1 \cos(f_n(x)) \, dx = \int_0^1 \cos(f(x)) \, dx.$$