DEPARTMENT OF MATHEMATICS AND STATISTICS
 UNIVERSITY OF MASSACHUSETTS ADVANCED EXAM - DIFFERENTIAL EQUATIONS
 August, 2011

Do five of the following problems. All problems carry equal weight. Passing level: 75% with at least three substantially complete solutions.
(1) Suppose that $x(t)$ satisfies the equation $x^{\prime}=A x$ where

$$
A=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-\beta & 0 & -2 & 0
\end{array}\right)
$$

where β is a parameter within the range $-\infty<\beta<1$. Calculate the general, real-valued solution and the stable, center, and unstable solution spaces for all values of $\beta<1$.
(2) Suppose that $f: R^{n} \rightarrow R^{n}$ is a C^{∞} vector field. Let $x\left(t, x_{o}\right)$ denote the solution of the initial value problem

$$
\begin{aligned}
\frac{d x}{d t} & =f(x) \\
x\left(0, x_{o}\right) & =x_{o} .
\end{aligned}
$$

(a) Consider the change of independent variable $t \rightarrow s$ where

$$
s=s\left(t, x_{o}\right)=\int_{0}^{t}\left(1+\left|f\left(x\left(r, x_{o}\right)\right)\right|^{2}\right) d r
$$

and $|\cdot|$ is the Euclidean norm, and define a change of dependent variable implicitly by the equation $y\left(s, x_{o}\right)=$ $x\left(t, x_{o}\right)$. Determine the initial value problem satisfied by y.
(b) Prove that every solution $y\left(s, x_{o}\right)$ of the initial value problem in (a) is defined and continuously differentiable on the interval $-\infty<s<\infty$.
(3) Consider the following system

$$
\begin{aligned}
x^{\prime} & =-2 x+y \\
y^{\prime} & =x^{2}-y^{2}+3
\end{aligned}
$$

(a) Determine all rest points and their linearized stability.
(b) Prove the existence of a connecting orbit between the two rest points. Sketching the phase plane is useful but is not in itself a complete answer to this question. You need to present a mathematical argument that justifies your sketch.
(4) Suppose that $u(t)$ and $\bar{u}(t)$ are two solutions on the interval $0 \leq t \leq T$ of the system

$$
u^{\prime}=f(u),
$$

where $n \geq 2$ and $f: R^{n} \rightarrow R^{n}$ is a smooth vector field and that

$$
\frac{\partial f_{i}}{\partial u_{j}}(u)>0
$$

holds for each $j \neq i$ and all u.
Prove that if $u(t)$ and $\bar{u}(t)$ satisfy the initial inequalities $u_{i}(0)<\bar{u}_{i}(0)$, then the two solutions satisfy

$$
u_{i}(t)<\bar{u}_{i}(t)
$$

on the interval $0 \leq t \leq T$ for all i.
(5) Consider the biharmonic equation

$$
\begin{array}{rlrl}
\Delta^{2} u & =f & \text { in } \quad \Omega, \quad \text { with data } \\
u & =0, \quad \frac{\partial u}{\partial n}=0 \quad \text { on } \quad \partial \Omega
\end{array}
$$

where Ω is a regular bounded open subset of the plane R^{2}, and $f \in L^{2}$.
(a) Define a weak solution for this problem. Be sure to explain your definition.
(b) Show that any weak solution which is also a C^{4} function is a classical solution.
(6) Consider the equation

$$
u_{t}+\Delta(\epsilon \Delta u-\beta u)=0
$$

defined on the torus \mathbb{T}^{3}, where ϵ and β are positive constants.
(a) Show that

$$
E(t)=\frac{\epsilon}{2} \int|\nabla u|^{2} d x+\frac{\beta}{2} \int u^{2} d x
$$

is monotonically decreasing for all C^{4} solutions u.
(b) Show that the IVP

$$
\begin{gathered}
u_{t}+\Delta(\epsilon \Delta u-\beta u)=f(x, t) \\
u(x, 0)=g(x)
\end{gathered}
$$

has at most one C^{4} solution on the torus, for any smooth f and g.
(7) Consider the heat equation $u_{t}=\epsilon u_{x x}$ on the halfplane $t>0$, with initial data

$$
u_{0}(x)= \begin{cases}1 & x<0 \\ 0 & x>0\end{cases}
$$

Find an integral representation for the solution $u(t, x)$, and use this to show that $u(t, x) \rightarrow c$ as $t \rightarrow \infty$ for each fixed x, for some constant c. Is this convergence uniform? If so, give a proof; if not, explain why not.

