DEPARTMENT OF MATHEMATICS AND STATISTICS
 UNIVERSITY OF MASSACHUSETTS ADVANCED EXAM - DIFFERENTIAL EQUATIONS
 August, 2010

Do five of the following problems. All problems carry equal weight.
Passing level: 75% with at least three substantially complete solutions.

1. Suppose that the 2-dimensional linear system $x^{\prime}=A x$ has a general solution of the form

$$
x(t)=c_{1}\binom{1}{2} e^{-t}+c_{2}\binom{2}{3} e^{2 t} .
$$

(a) Find the matrix A for this system.
(b) Find the exponential matrix $e^{t A}$.
2. Consider the 3 -dimensional system of ODE's,

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)^{\prime}=\left(\begin{array}{c}
y \\
z \\
1-x^{2}+y
\end{array}\right)
$$

(a) Describe the behavior of solutions in small neighborhoods of the two rest points $(\pm 1,0,0)$.
(b) Let $V(x, y, z)=y z-x+x^{3} / 3$, and let $v(t)=V(x(t), y(t), z(t))$, where $(x(t), y(t), z(t))$ is a solution of the ODE's. Suppose that $v(t)=c$ for some constant c for all real t. Show that the solution must be one of the two rest points.
(c) Suppose that there is a nonconstant solution $(x(t), y(t), z(t))$ of the ODE's such that

$$
|x(t)|+|y(t)|+|z(t)| \leq M
$$

for all t and for some constant $M>0$. Show that
$\lim _{t \rightarrow-\infty}(x(t), y(t), z(t))=(1,0,0), \quad \lim _{t \rightarrow \infty}(x(t), y(t), z(t))=(-1,0,0)$.
(It is sufficient to give a detailed analysis for one of the two limiting directions.)
3. Consider the system

$$
\begin{align*}
x^{\prime} & =2-x^{2}-y \tag{1}\\
y^{\prime} & =-y-x .
\end{align*}
$$

(a) Use linearization to analyze the stability and local behavior of various solutions in the stable and/or unstable manifolds of the two critical points $(-1,1)$ and $(2,-2)$ of (??) in small neighborhoods of each rest point.
(b) Sketch the null sets $x^{\prime}=0$ and $y^{\prime}=0$ for the system (??), and use the analysis in (a) to sketch the behavior of the solutions in the stable and/or unstable manifolds of $(-1,1)$ and $(2,-2)$ in small neighborhoods of the two rest points. Your figure should depict the behavior of solutions in these manifolds with respect to the the null sets $x^{\prime}=0$ and $y^{\prime}=0$. Justify your drawing with appropriate analytical calculations based on information about the linearized systems.
(c) Give a rigorous proof of the existence of a solution $(x(t), y(t))$ of (??) running from $(-1,1)$ as $t \rightarrow-\infty$ to $(2,-2)$ as $t \rightarrow+\infty$.
4. Solve the Cauchy problem

$$
\begin{array}{r}
(x+y) u_{x}+y u_{y}=1 \\
u(x, 1)=x, \quad \text { for } \quad 0<x<1
\end{array}
$$

Describe the region over which the solution is uniquely determined.
5. Find Green's function for Laplace's equation $-\Delta u=0$ in the region

$$
U=\left\{x \in R^{3}: x_{1}>0, x_{2}>0\right\}
$$

[Hint: first consider a half-plane.]
6. Consider the equation

$$
u_{t}=\epsilon u_{x x}
$$

with periodic boundary conditions,

$$
u(-L, t)=u(L, t), \quad u_{x}(-L, t)=u_{x}(L, t)
$$

which models heat flow in a circular ring of circumference $2 L$.
(a) Find all eigenfunctions of this BVP.
(b) Show that the initial boundary value problem has a solution for any periodic initial data $u_{0} \in L^{1} \cap L^{2}$.
(c) Show that this solution is a classical solution in the domain $t>0$.
7. Consider the IBVP for the wave equation with Robin boundary conditions

$$
\begin{array}{rr}
u_{t t}=\tau u_{x x}, & (0<x<L, t>0) \\
u(x, 0)=\phi(x), & u_{t}(x, 0)=\psi(x) \\
k_{0} u(0, t)-\tau u_{x}(0, t)=0, \quad k_{1} u(L, t)+\tau u_{x}(L, t)=0
\end{array}
$$

with τ, k_{0} and k_{1} positive constants. Show that the energy

$$
E(t)=\frac{1}{2} \int_{0}^{L} u_{t}^{2} d x+\frac{1}{2} \int_{0}^{L} \tau u_{x}^{2} d x+\frac{1}{2} k_{0} u(0, t)^{2}+\frac{1}{2} k_{1} u(L, t)^{2}
$$

is constant, and use this result to show that there can be at most one solution to the initial-boundary value problem.

