# Department of Mathematics and Statistics <br> University of Massachusetts <br> ADVANCED EXAM - DIFFERENTIAL EQUATIONS JANUARY 2007 

Do five of the following problems. All problems carry equal weight.
Passing level: $75 \%$ with at least three substantially complete solutions.

1a.) Show that

$$
E(x, y)=\frac{1}{2} y^{2}-\cos x
$$

is non-increasing on all solutions $(x(t), y(t))$ of

$$
(*) \begin{aligned}
& x^{\prime}=y \\
& y^{\prime}=-c y-\sin x
\end{aligned}
$$

for any given constant $c \geq 0$.
1b.) Describe the structure of the global phase plane of $(*)$ in the region

$$
\left\{(x, y):-\frac{3 \pi}{2}<x<\frac{3 \pi}{2}\right\}
$$

when

$$
\text { (1) } \quad c=0, \quad \text { (2) } \quad c=3 \text {. }
$$

Complete answers should include sketches depicting all periodic and/or connecting orbits (if any), and the local behavior of all solutions near rest points (in each case), and should be supported by accompanying analytical calculations and arguments.

2a.) Suppose that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ and $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ are smooth and that a bounded domain $\sigma \subset \mathbb{R}^{n}$ is defined by $\sigma=\{x: g(x)<0\}$. Suppose that there is a constant $\delta>0$ with $\nabla g(x) \cdot f(x)<-\delta$ for all $x \in \partial \sigma$. Prove that if $x(t)$ is the solution to $x^{\prime}=f(x), x(0)=x_{0}$, then $x_{0} \in \sigma$ implies that $x(t) \in \sigma$ for all $t \geq 0$.

2b.) Consider the nonautonomous initial value problem

$$
\frac{d x}{d t}=f(x, t), \quad x(0)=x_{0}
$$

Suppose that a tube-like region $\Sigma$ in $\mathbb{R}^{n} \times \mathbb{R}$ is defined as the union (over $t \in \mathbb{R}$ ) of bounded domains

$$
\sigma_{t}=\left\{x \in \mathbb{R}^{n}: G(x, t)<0\right\}
$$

for some smooth function $G: \mathbb{R}^{n} \times \mathbb{R} \rightarrow \mathbb{R}$. Formulate a condition under which $\left(x_{0}, 0\right) \in \Sigma$ implies that $(x(t), t) \in \Sigma$ for all $t \geq 0$.
3.) Let $\Omega \subseteq \mathbb{R}^{n}$ be a smooth, bounded domain, and for every $\tau \geq 0$ let $w=w(x, t ; \tau)$ denote the solution of the initial-value problem:

$$
\left\{\begin{array}{cl}
w_{t}-\Delta w=0 & x \in \Omega, \quad t>\tau \\
w=0 & x \in \partial \Omega, \quad t>\tau \\
\left.w\right|_{t=\tau}=f(x, \tau) & x \in \Omega
\end{array}\right.
$$

where $f(x, t)$ is a given function defined and smooth for $x \in \Omega, t \geq 0$. Express the solution $u=u(x, t)$ of the problem

$$
\left\{\begin{array}{cl}
u_{t}-\Delta u=f(x, t) & x \in \Omega, t>0 \\
u=0 & x \in \partial \Omega, t>0 \\
\left.u\right|_{t=0}=0 & x \in \Omega,
\end{array}\right.
$$

in terms of $w$ and fully justify this expression.

HINT: To infer the required expression consider the analogous ODE system $\dot{x}=A x+f(t)$ with $x(0)=0$.
4.) Consider the equation for a vibrating string with "internal damping" (involving the rather unusual $u_{x x t}$ term):

$$
\left\{\begin{array}{l}
u_{t t}=u_{x x}+\epsilon^{2} u_{x x t} \quad \text { in } 0<x<1, t>0  \tag{*}\\
u(0, t)=0=u(1, t)
\end{array}\right.
$$

(i) Show that any solution of $\left({ }^{*}\right)$ satisfies

$$
\frac{d E}{d t} \leq 0 \text { with } E(t)=\frac{1}{2} \int_{0}^{1}\left(u_{t}^{2}+u_{x}^{2}\right) d x
$$

(ii) Use the result (i) to deduce the uniqueness of the solution of the initial value problem for $\left(^{*}\right)$.
5.) Let $\Omega_{a}=\{(x, y): 0<x<a, 0<y<1\}$.
(i) Find the smallest number $a>0$ such that the problem

$$
\left\{\begin{array}{l}
u_{x x}+u_{y y}+13 u=f \quad \text { in } \Omega_{a}  \tag{*}\\
u=0 \text { on } \partial \Omega_{a}
\end{array}\right.
$$

can have more than one solution for some function $f=f(x, y)$.
(ii) For the value of $a$ found in part (i) discuss solving $\left({ }^{*}\right)$ when $f(x, y)=\sin \pi y$.
6.) State and prove the classical maximum principle for the initial boundary value problem for the heat equation:

$$
\begin{cases}\frac{\partial u}{\partial t}-\Delta u=0 & \text { for }(x, t) \in \Omega \times(0, T) \\ u(x, t)=\varphi(x, t) & \text { for } x \in \partial \Omega, 0 \leq t \leq T \\ u(x, 0)=u_{0}(x) & \text { for } x \in \bar{\Omega},\end{cases}
$$

for general (regular) boundary data $\varphi$ and initial data $u_{0}$, with $\varphi(x, 0)=$ $u_{0}(x)$.

