ADVANCED EXAM - DIFFERENTIAL EQUATIONS AUGUST 30, 2004

Do five of the following problems. All problems carry equal weight. Passing level: 75% with at least three substantially complete solutions.

1. Assume Ω is a bounded, connected open subset of \mathbb{R}^{n} with smooth boundary. Show that for $1 \leq p \leq \infty$, there is a constant $C=C(n, p, \Omega)$ such that

$$
\left\|u-(u)_{\Omega}\right\|_{L^{p}(\Omega)} \leq C\|\nabla u\|_{L^{p}(\Omega)}
$$

where

$$
(u)_{\Omega}=\frac{1}{|\Omega|} \int_{\Omega} u(x) d x
$$

HINT: Prove first the inequality for smooth functions.
2. Let $u=u(x, t), x \in \mathbb{R}^{n}, t>0$ be a smooth solution to the wave equation

$$
\text { (2) } u_{t t}-\Delta u=0 \quad x \in \mathbb{R}^{n}, \quad t \in(0, T)
$$

a) Show that the quantity

$$
e(t)=\frac{1}{2} \int_{B\left(x_{0}, T-t\right)}\left[u_{t}^{2}+|\nabla u|^{2}\right] d x
$$

where $x_{0} \in \mathbb{R}^{n}$ is an arbitrary point in \mathbb{R}^{n} and $B\left(x_{0}, r\right)$ denotes a ball with center at x_{0} and radius r, satisfies

$$
\frac{d}{d t} e(t) \leq 0 \quad t \in(0, T)
$$

b) Use (a) to state and prove a uniqueness result for a suitable initial value problem for equation (2).
3. a) Study the linear stability of all steady states of the system

$$
\text { (1) }\left\{\begin{array}{l}
w^{\prime}=a v-w-b \\
v^{\prime}=v\left(\frac{1}{2}-v\right)(v-1)-w
\end{array} \quad, \quad a>0\right.
$$

for all possible choices of constants $a>0, b \in \mathbb{R}$.
b) Prove that for a suitable parameter regime $(a>0, b \in \mathbb{R}),(1)$ has at least one nontrivial periodic solution.
4. a) Consider the functional

$$
E[u]=\int_{\Omega} \frac{1}{2}|\nabla u|^{2}-u f d x
$$

($\Omega \subset \mathbb{R}^{n}$ bounded, $\partial \Omega$ smooth) where f is a given $L^{2}(\Omega)$ function. Show that $E[u]$ is bounded from below over all $u \in H_{0}^{1}(\Omega)$. By employing a minimizing sequence, show that $E[u]$ has a minimizer in $H_{0}^{1}(\Omega)$.
b) Prove that the minimizer in (a) is unique in $H_{0}^{1}(\Omega)$.
5. Consider the system on \mathbb{R}^{3} given by

$$
\begin{aligned}
& x_{1}^{\prime}=x_{2} \\
& x_{2}^{\prime}=x_{3} \\
& x_{3}^{\prime}=x_{1}\left(\alpha-x_{1}\right)
\end{aligned}
$$

where $\alpha>0$ is constant.
a) Show that there is no solution running from $(0,0,0)$ at $-\infty$ to $(\alpha, 0,0)$ at $+\infty$.
HINT: Construct a suitable Liapunov function.
b) Show by linearization methods that for small $\alpha, 0<\alpha \ll 1$, there is exactly one solution (modulo translations) running from $(\alpha, 0,0)$ at $t=-\infty$ to $(0,0,0)$ at $t=+\infty$.
6. Consider the system

$$
\begin{aligned}
& x^{\prime}=x^{2} y^{3}+5 x y^{4}-x^{9} \\
& y^{\prime}=x^{4} y-3 x^{3} y^{3}-y^{7} \\
& z^{\prime}=-\left(1+x^{2}\right) z+x^{3} y^{3}
\end{aligned}
$$

Find positive numbers $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ such that if $|x(0)|<P, \quad|y(0)|<Q$, and $|Z(0)|<R$, then these inequalities also hold for the solution for all $t>0$.

