Department of Mathematics and Statistics University of Massachusetts

ADVANCED EXAM — DIFFERENTIAL EQUATIONS JANUARY 21, 2003

Do five of the following problems. All problems carry equal weight. Passing level: 75% with at least three substantially complete solutions.

(1) Consider the system

$$x' = (x^2 + y^2 - 1)x - (x^2 + y^2)y$$

$$y' = (x^2 + y^2)x - (x^2 + y^2 - 1)y.$$
(1)

- (a) Show that every solution of (1) satisfies an estimate of the form $x(t)^2 + y(t)^2 \le M$ for some M > 0 (depending on the solution).
- (b) Determine whether the rest point (0,0) is stable. Is the rest point asymptotically stable? (Justify your answer in each case with a calculation).
- (c) How does the solution through a point $(x_o, y_o) \neq (0, 0)$ behave as $t \to -\infty$?
- (2) Solve the linearized shallow water equations,

$$\left(\begin{array}{c} u \\ \varphi \end{array}\right)_t + \left(\begin{array}{cc} \overline{u} & 1 \\ \overline{\varphi} & \overline{u} \end{array}\right) \left(\begin{array}{c} u \\ \varphi \end{array}\right)_x = 0,$$

where $\overline{u}, \overline{\varphi} > 0$ are constants, and with initial data

$$u(x,0) = u_0(x)$$

$$\varphi(x,0) = \varphi_0(x).$$

(3) Consider the minimization problem

$$\inf_{w \in H_0^1(\Omega)} E(w) \tag{2}$$

where

$$E(w) = \int_{\Omega} \frac{1}{2} |\nabla w|^2 - wf \, dx$$

and $f \in L^2(\Omega)$ is given, $\Omega \subset \mathbb{R}^d$ connected, bounded with smooth boundary.

(a) Show that a minimizer of (2) is a weak solution of

$$\left\{ \begin{array}{cc} -\Delta u = f & in \ \Omega \\ u = 0 & on \ \partial \Omega \end{array} \right.$$
 (3)

- (b) Show that if u is a weak solution of (3) then u is a minimizer of (2).
- (c) Show that (2) has a unique minimizer.
- (4) (a) Suppose that $0 \le \alpha < 1$. Calculate an Energy function E(u, v) such that for each solution (u(t), v(t)) of (4)

$$u' = v$$

$$v' = -\alpha u + (u^2 - 1)(u - \alpha)$$
(4)

E(u(t),v(t)) is constant. Use the energy function to sketch the solution curves for each α in the range $0 \le \alpha < 1$. Use the behavior of solutions in a neighborhood of the point $(u,v) = (\alpha,0)$ to classify the different phase planes into qualitatively similar groups.

(b) Now consider the system

$$u' = v$$

$$v' = -\alpha u + (u^2 - 1)(u - \alpha)$$

$$\alpha' = -100\alpha$$
(5)

Find the possible ω limit sets of an orbit through a point (u_o, v_o, α_o) .

(5) Prove that if $u \in H^s(\mathbb{R}^2)$ and s > 1, then

$$\max_{x \in \mathbb{R}^2} |u(x)| \le C||u||_s$$

where C is independent of u.

(6)(a) Prove that the largest eigenvalue λ_1 of the operator $Lu = \Delta u + a(x)u$ on the space $H_0^1(\Omega)$, where Ω is a bounded domain in \mathbb{R}^n with smooth boundary, satisfies the equality

$$\lambda_1 = \max_{u \in H_0^1(\Omega)} Q[u]$$

where a(x) is a given continuous function on $\bar{\Omega}$ and

$$Q[u] = \frac{\int_{\Omega} (-|\nabla u(x)|^2 + a(x)u(x)^2) \ dx}{\int_{\Omega} u(x)^2 \ dx}.$$

(b) Suppose that n=1 and that $a(x)=\frac{2}{\pi}\arctan x$. Find $L_*>0$ and find a function $u_*\in H^1_0(-L_*,L_*)$ so that $Q[u_*]>0$ when $L=L_*$.

(7) Consider the system

$$\begin{cases} w_t = w_{xx} + z - w &, & x \in (a,b) &, & t > 0 \\ z_t = z_{xx} + w - z &, & x \in (a,b) &, & t > 0 \\ w(a,t) = w(b,t) = z(a,t) = z(b,t) = 0 &, & t \ge 0 \end{cases}$$
(6)

- (a) Construct a Lyapunov functional of (6) for smooth solutions w and z.
- (b) Show that (6) has at most one smooth solution.
- (c) Using the Poincaré inequality show that the solution (w, z) of (6) decays exponentially as $t \to \infty$, in a suitable norm.