Department of Mathematics and Statistics
 University of Massachusetts
 ADVANCED EXAM - DIFFERENTIAL EQUATIONS
 JANUARY 21, 2003

Do five of the following problems. All problems carry equal weight. Passing level: 75% with at least three substantially complete solutions.
(1) Consider the system

$$
\begin{align*}
x^{\prime} & =\left(x^{2}+y^{2}-1\right) x-\left(x^{2}+y^{2}\right) y \tag{1}\\
y^{\prime} & =\left(x^{2}+y^{2}\right) x-\left(x^{2}+y^{2}-1\right) y
\end{align*}
$$

(a) Show that every solution of (1) satisfies an estimate of the form $x(t)^{2}+$ $y(t)^{2} \leq M$ for some $M>0$ (depending on the solution).
(b) Determine whether the rest point $(0,0)$ is stable. Is the rest point asymptotically stable? (Justify your answer in each case with a calculation).
(c) How does the solution through a point $\left(x_{o}, y_{o}\right) \neq(0,0)$ behave as $t \rightarrow-\infty$?
(2) Solve the linearized shallow water equations,

$$
\binom{u}{\varphi}_{t}+\left(\begin{array}{cc}
\bar{u} & 1 \\
\bar{\varphi} & \bar{u}
\end{array}\right)\binom{u}{\varphi}_{x}=0
$$

where $\bar{u}, \bar{\varphi}>0$ are constants, and with initial data

$$
\begin{aligned}
& u(x, 0)=u_{0}(x) \\
& \varphi(x, 0)=\varphi_{0}(x) .
\end{aligned}
$$

(3) Consider the minimization problem

$$
\begin{equation*}
\inf _{w \in H_{0}^{1}(\Omega)} E(w) \tag{2}
\end{equation*}
$$

where

$$
E(w)=\int_{\Omega} \frac{1}{2}|\nabla w|^{2}-w f d x
$$

and $f \in L^{2}(\Omega)$ is given, $\Omega \subset \mathbb{R}^{d}$ connected, bounded with smooth boundary.
(a) Show that a minimizer of (2) is a weak solution of

$$
\left\{\begin{align*}
-\Delta u=f & \text { in } \Omega \tag{3}\\
u=0 & \text { on } \partial \Omega
\end{align*}\right.
$$

(b) Show that if u is a weak solution of (3) then u is a minimizer of (2).
(c) Show that (2) has a unique minimizer.
(4) (a) Suppose that $0 \leq \alpha<1$. Calculate an Energy function $E(u, v)$ such that for each solution $(u(t), v(t))$ of (4)

$$
\begin{align*}
u^{\prime} & =v \tag{4}\\
v^{\prime} & =-\alpha u+\left(u^{2}-1\right)(u-\alpha)
\end{align*}
$$

$E(u(t), v(t))$ is constant. Use the energy function to sketch the solution curves for each α in the range $0 \leq \alpha<1$. Use the behavior of solutions in a neighbohood of the point $(u, v)=(\alpha, 0)$ to classify the different phase planes into qualitatively similar groups.
(b) Now consider the system

$$
\begin{align*}
u^{\prime} & =v \tag{5}\\
v^{\prime} & =-\alpha u+\left(u^{2}-1\right)(u-\alpha) \\
\alpha^{\prime} & =-100 \alpha
\end{align*}
$$

Find the possible ω limit sets of an orbit through a point $\left(u_{o}, v_{o}, \alpha_{o}\right)$.
(5) Prove that if $u \in H^{s}\left(\mathbb{R}^{2}\right)$ and $s>1$, then

$$
\max _{x \in \mathbb{R}^{2}}|u(x)| \leq C\|u\|_{s}
$$

where C is independent of u.
(6)(a) Prove that the largest eigenvalue λ_{1} of the operator $L u=\Delta u+a(x) u$ on the space $H_{0}^{1}(\Omega)$, where Ω is a bounded domain in \mathbb{R}^{n} with smooth boundary, satisfies the equality

$$
\lambda_{1}=\max _{u \in H_{0}^{1}(\Omega)} Q[u]
$$

where $a(x)$ is a given continuous function on $\bar{\Omega}$ and

$$
Q[u]=\frac{\int_{\Omega}\left(-|\nabla u(x)|^{2}+a(x) u(x)^{2}\right) d x}{\int_{\Omega} u(x)^{2} d x}
$$

(b) Suppose that $n=1$ and that $a(x)=\frac{2}{\pi} \arctan x$. Find $L_{*}>0$ and find a function $u_{*} \in H_{0}^{1}\left(-L_{*}, L_{*}\right)$ so that $Q\left[u_{*}\right]>0$ when $L=L_{*}$.
(7) Consider the system

$$
\left\{\begin{array}{llll}
w_{t}=w_{x x}+z-w & , & x \in(a, b) & , \tag{6}\\
z_{t}=z_{x x}+w-z & , & t>0 \\
w(a, t)=w(b, t)=z(a, t)=z(b, t)=0 & , & , & t \geq 0
\end{array}\right.
$$

(a) Construct a Lyapunov functional of (6) for smooth solutions w and z.
(b) Show that (6) has at most one smooth solution.
(c) Using the Poincaré inequality show that the solution (w, z) of (6) decays exponentially as $t \rightarrow \infty$, in a suitable norm.

