University of Massachusetts Department of Mathematics and Statistics Advanced Exam in Geometry For August 2013

Do 5 out of the following 8 problems. Indicate clearly which questions you want graded. *Passing standard:* 70% with three problems essentially complete. Justify all your answers.

- 1. Prove or disprove the following statements:
 - (a) The tangent bundle $T(RP^2 \times S^1)$ is trivial.
 - (b) The connected sum of $\mathbb{R}P^3$ with itself is orientable.
- 2. Consider the smooth map $f: \mathbb{R}^3 \to \mathbb{R}^4$ given by $f(x, y, z) = (x^2 y^2, xy, xz, yz)$. Let M be the image of the restriction of f on the unit sphere $x^2 + y^2 + z^2 = 1$. Show that M is an embedded submanifold of \mathbb{R}^4 .
- 3. Use the Mayer-Vietoris sequence and induction to compute the de Rham cohomology groups of the complex projective spaces $\mathbb{C}P^n$.
- 4. Let D be the 2-dimensional smooth distribution on \mathbb{R}^3 spanned by vector fields $X = \frac{\partial}{\partial x} x \frac{\partial}{\partial z}, \ Y = x \frac{\partial}{\partial x} + \frac{\partial}{\partial y} (x^2 + y) \frac{\partial}{\partial z}.$
 - (a) Show that D is involutive.
 - (b) Describe the integral submanifolds of D in \mathbb{R}^3 .
- 5. Consider the set E over the real projective space RP^n given by

$$E := \sqcup_{x \in RP^n} E_x$$

where for each point $x = [x_0 : x_1 : \cdots : x_n] \in RP^n$, E_x is the unique line through the point (x_0, x_1, \cdots, x_n) and the origin in \mathbb{R}^{n+1} .

- (a) Show that E is naturally a smooth vector bundle over $\mathbb{R}P^n$.
- (b) Show that E is not isomorphic to the product bundle (i.e. the trivial bundle) over RP^n for any $n \ge 1$.
- 6. Let n > 0. Suppose $f: M \to S^n$ is an immersion from a compact closed, connected n-manifold M to the n-sphere S^n . Prove that f is a diffeomorphism.

- 7. Consider the noncompact surface $S = \{(x, y, z) : z = x^2 + y^2\} \subset \mathbb{R}^3$.
 - (a) Find the supremum for the Gauss curvature and the subset of S on which it is attained.
 - (b) Does the Gauss curvature attain its infimum on S? (Explain why or why not!)
- 8. Prove that the set of upper triangular real 3×3 matrices with determinant 1 is a Lie group. Furthermore,
 - (a) How many connected components does this group have?
 - (b) Determine its Lie algebra and compute its dimension.