## University of Massachusetts Department of Mathematics and Statistics <br> Advanced Exam in Geometry For August 2013

Do 5 out of the following 8 problems. Indicate clearly which questions you want graded. Passing standard: $70 \%$ with three problems essentially complete. Justify all your answers.

1. Prove or disprove the following statements:
(a) The tangent bundle $T\left(R P^{2} \times S^{1}\right)$ is trivial.
(b) The connected sum of $R P^{3}$ with itself is orientable.
2. Consider the smooth map $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$ given by $f(x, y, z)=\left(x^{2}-y^{2}, x y, x z, y z\right)$. Let $M$ be the image of the restriction of $f$ on the unit sphere $x^{2}+y^{2}+z^{2}=1$. Show that $M$ is an embedded submanifold of $\mathbb{R}^{4}$.
3. Use the Mayer-Vietoris sequence and induction to compute the de Rham cohomology groups of the complex projective spaces $C P^{n}$.
4. Let $D$ be the 2-dimensional smooth distribution on $\mathbb{R}^{3}$ spanned by vector fields $X=\frac{\partial}{\partial x}-x \frac{\partial}{\partial z}, Y=x \frac{\partial}{\partial x}+\frac{\partial}{\partial y}-\left(x^{2}+y\right) \frac{\partial}{\partial z}$.
(a) Show that $D$ is involutive.
(b) Describe the integral submanifolds of $D$ in $\mathbb{R}^{3}$.
5. Consider the set $E$ over the real projective space $R P^{n}$ given by

$$
E:=\sqcup_{x \in R P^{n}} E_{x}
$$

where for each point $x=\left[x_{0}: x_{1}: \cdots: x_{n}\right] \in R P^{n}, E_{x}$ is the unique line through the point $\left(x_{0}, x_{1}, \cdots, x_{n}\right)$ and the origin in $\mathbb{R}^{n+1}$.
(a) Show that $E$ is naturally a smooth vector bundle over $R P^{n}$.
(b) Show that $E$ is not isomorphic to the product bundle (i.e. the trivial bundle) over $R P^{n}$ for any $n \geq 1$.
6. Let $n>0$. Suppose $f: M \rightarrow S^{n}$ is an immersion from a compact closed, connected $n$-manifold $M$ to the $n$-sphere $S^{n}$. Prove that $f$ is a diffeomorphism.
7. Consider the noncompact surface $S=\left\{(x, y, z): z=x^{2}+y^{2}\right\} \subset \mathbb{R}^{3}$.
(a) Find the supremum for the Gauss curvature and the subset of $S$ on which it is attained.
(b) Does the Gauss curvature attain its infimum on $S$ ? (Explain why or why not!)
8. Prove that the set of upper triangular real $3 \times 3$ matrices with determinant 1 is a Lie group. Furthermore,
(a) How many connected components does this group have?
(b) Determine its Lie algebra and compute its dimension.

