University of Massachusetts Department of Mathematics and Statistics Advanced Exam in Geometry August 2011

Do 5 out of the following 8 problems. Indicate clearly which questions you want graded. Passing standard: 70% with three problems essentially complete. Justify all your answers.

1. Suppose that N_{1} and N_{2} are codimension one embedded submanifolds of a manifold M. Suppose further that N_{1} and N_{2} intersect transversely, i.e. for all $p \in N_{1} \cap N_{2}$, the tangent spaces $T_{p} N_{1}$ and $T_{p} N_{2}$ span $T_{p} M$. Then $N_{1} \cap N_{2}$ is a codimension 2 submanifold of M.
(a) Show that there exists a Riemannian metric g on M so that for every point $p \in N_{1} \cap N_{2}$, normal vectors at p to N_{1} and N_{2} are orthogonal. In particular any normal vector to N_{1} is tangent to N_{2} and vice-versa.
(b) Show that if M, N_{1}, and N_{2} are all orientable, then so is $N_{1} \cap N_{2}$.
2. Let M be a connected n-dimensional manifold, and let $p, q \in M$ be distinct points. Show that the deRham cohomology $H_{d R}^{n-1}(M \backslash\{p, q\})$ is not zero.
3. Let ω be a symplectic 2 -form on \mathbb{R}^{2}, i.e., ω is closed and non-degenerate. Show that for any point $p \in \mathbb{R}^{2}$, there is a local coordinate system (x, y) near p such that $\omega=d x \wedge d y$.
Hint:
step 1: show that near $p, \omega=d \alpha$ for some nonvanishing 1-form α.
step 2: show that $\alpha=f d g$ for some smooth functions f, g near p.
step 3: use the non-degeneracy of ω to finish the proof.
4. Give a proof or a counterexample for each statement.
(a) If ω is an $(n-1)$-form on a compact smooth n-manifold M (without boundary), then there exists $p \in M$ so that $d \omega(p)=0$.
(b) If α is a non-vanishing 1 -form on a manifold M, then there exists a 1 -form β so that $\alpha \wedge \beta$ is non-vanishing.
5. Let (M, g) be an oriented Riemannian manifold.
(a) Define the divergence div X, of a smooth vector field X on M.
(b) Let θ_{t} be the flow generated by the vector field X. (if you like, you can assume X is complete.) Show that

$$
\left.\frac{d}{d t} \theta_{t}^{*}\left(d V_{g}\right)\right|_{t=0}=(\operatorname{div} X) d V_{g}
$$

where $d V_{g}$ is the Riemannian volume form. (Hint: one approach is to prove it first in a neighborhood of a point where $X_{p} \neq 0$; this means you can put X in a simple form. Then use continuity to handle the points where $X_{p}=0$.)
(c) Show that if div $X=0$, then for any compactly supported $f \in C^{\infty}(M)$, the integral $\int_{M}\left(f \circ \theta_{t}\right) d V_{g}$ is independent of t.
6. Let J be the $n \times n$ matrix with k entries 1 and $n-k$ entries -1 on the diagonal and zeros everywhere else. Show that

$$
G=\left\{A \in G L(n, \mathbb{R}) \mid A J A^{t}=J\right\}
$$

is a Lie subgroup of $G L(n, \mathbb{R})$. Compute its dimension and its Lie algebra as a subalgebra of $\mathfrak{g l}(n, \mathbb{R})$.
7. Let M be the surface in \mathbb{R}^{3}

$$
M=\{(r \cos \theta, r \sin \theta, r) \mid r, \theta \in \mathbb{R}, r>0\}
$$

(a) Write the differential equations for parallel transport of a tangent vector $X(t)=f(t) \partial_{r}+g(t) \partial_{\theta}$ around the loop $r(t)=1, \theta(t)=t, 0 \leq t \leq 2 \pi$.
(b) Show that the Gaussian curvature of M is identically zero. Why does this not contradict part (a)?
8. For any $0<a \leq 1$, let T_{a} be the quotient of \mathbb{R}^{2} by the equivalence relation generated by $(x, y) \sim(x+a, y)$ and $(x, y) \sim(x, x+1 / a)$ for all $(x, y) \in \mathbb{R}^{2}$.
(a) Show that T_{a} is a compact orientable smooth manifold and the standard metric $d x^{2}+d y^{2}$ on \mathbb{R}^{2} induces a metric g_{a} on T_{a}.
(b) Show that the manifolds T_{a} are all diffeomorphic, and they all have the same total volume (i.e., the integral of the volume form is independent of a).
(c) Show that T_{a} and T_{b} are not isometric unless $a=b$. Hint: look at closed geodesics.

