University of Massachusetts Department of Mathematics and Statistics Advanced Exam in Geometry August 2011

Do 5 out of the following 8 problems. Indicate clearly which questions you want graded. *Passing standard:* 70% with three problems essentially complete. Justify all your answers.

- 1. Suppose that N_1 and N_2 are codimension one embedded submanifolds of a manifold M. Suppose further that N_1 and N_2 intersect transversely, i.e. for all $p \in N_1 \cap N_2$, the tangent spaces T_pN_1 and T_pN_2 span T_pM . Then $N_1 \cap N_2$ is a codimension 2 submanifold of M.
 - (a) Show that there exists a Riemannian metric g on M so that for every point $p \in N_1 \cap N_2$, normal vectors at p to N_1 and N_2 are orthogonal. In particular any normal vector to N_1 is tangent to N_2 and vice-versa.
 - (b) Show that if M, N_1 , and N_2 are all orientable, then so is $N_1 \cap N_2$.
- 2. Let M be a connected n-dimensional manifold, and let $p, q \in M$ be distinct points. Show that the deRham cohomology $H_{dR}^{n-1}(M \setminus \{p,q\})$ is not zero.
- 3. Let ω be a symplectic 2-form on \mathbb{R}^2 , i.e., ω is closed and non-degenerate. Show that for any point $p \in \mathbb{R}^2$, there is a local coordinate system (x, y) near p such that $\omega = dx \wedge dy$.

Hint:

- step 1: show that near $p, \omega = d\alpha$ for some nonvanishing 1-form α .
- step 2: show that $\alpha = fdg$ for some smooth functions f, g near p.
- step 3: use the non-degeneracy of ω to finish the proof.
- 4. Give a proof or a counterexample for each statement.
 - (a) If ω is an (n-1)-form on a compact smooth n-manifold M (without boundary), then there exists $p \in M$ so that $d\omega(p) = 0$.
 - (b) If α is a non-vanishing 1-form on a manifold M, then there exists a 1-form β so that $\alpha \wedge \beta$ is non-vanishing.

- 5. Let (M, g) be an oriented Riemannian manifold.
 - (a) Define the divergence $\operatorname{div} X$, of a smooth vector field X on M.
 - (b) Let θ_t be the flow generated by the vector field X. (if you like, you can assume X is complete.) Show that

$$\left. \frac{d}{dt} \, \theta_t^*(dV_g) \right|_{t=0} = (\operatorname{div} X) dV_g$$

where dV_g is the Riemannian volume form. (Hint: one approach is to prove it first in a neighborhood of a point where $X_p \neq 0$; this means you can put X in a simple form. Then use continuity to handle the points where $X_p = 0$.)

- (c) Show that if div X = 0, then for any compactly supported $f \in C^{\infty}(M)$, the integral $\int_{M} (f \circ \theta_{t}) dV_{g}$ is independent of t.
- 6. Let J be the $n \times n$ matrix with k entries 1 and n-k entries -1 on the diagonal and zeros everywhere else. Show that

$$G = \{ A \in GL(n, \mathbb{R}) \mid AJA^t = J \}$$

is a Lie subgroup of $GL(n, \mathbb{R})$. Compute its dimension and its Lie algebra as a subalgebra of $\mathfrak{gl}(n, \mathbb{R})$.

7. Let M be the surface in \mathbb{R}^3

$$M = \{ (r\cos\theta, r\sin\theta, r) \mid r, \theta \in \mathbb{R}, \ r > 0 \}.$$

- (a) Write the differential equations for parallel transport of a tangent vector $X(t) = f(t)\partial_r + g(t)\partial_\theta$ around the loop r(t) = 1, $\theta(t) = t$, $0 \le t \le 2\pi$.
- (b) Show that the Gaussian curvature of M is identically zero. Why does this not contradict part (a)?
- 8. For any $0 < a \le 1$, let T_a be the quotient of \mathbb{R}^2 by the equivalence relation generated by $(x,y) \sim (x+a,y)$ and $(x,y) \sim (x,x+1/a)$ for all $(x,y) \in \mathbb{R}^2$.
 - (a) Show that T_a is a compact orientable smooth manifold and the standard metric $dx^2 + dy^2$ on \mathbb{R}^2 induces a metric g_a on T_a .
 - (b) Show that the manifolds T_a are all diffeomorphic, and they all have the same total volume (i.e., the integral of the volume form is independent of a).
 - (c) Show that T_a and T_b are not isometric unless a = b. Hint: look at closed geodesics.