University of Massachusetts Department of Mathematics and Statistics Advanced Exam in Geometry
 August 2010

Do 5 out of the following 8 problems. Indicate clearly which questions you want graded. Passing standard: 70% with three problems essentially complete. Justify all your answers.

Problem 1. Let M be an n-dimensional manifold and $N \subset M$ an embedded submanifold of codimension k.
a) Prove that the tangent bundle $T N$ may be regarded as an embedded submanifold of $T M$ of codimension $2 k$.
b) Find equations that describe $T S^{n-1}$, implicitly, as an embedded submanifold of $T \mathbb{R}^{n} \cong \mathbb{R}^{2 n}$. That is, find a smooth map $F: \mathbb{R}^{2 n} \rightarrow \mathbb{R}^{2}$, having $0 \in \mathbb{R}^{2}$ as a regular value, and such that

$$
T S^{n-1}=F^{-1}(0)
$$

Verify that the map you defined satisfies the required conditions.

Problem 2. Let M be a three-dimensional manifold. A contact structure on M is a two-dimensional C^{∞} distribution Δ on M which, locally, is given as $\Delta=\operatorname{ker}(\alpha)$, where α is a one-form such that $\alpha \wedge d \alpha \neq 0$ everywhere in the open set where α is defined. That is, for every $p \in M$ there exists an open set U containing p and a one-form α defined on U such that

$$
\Delta(q)=\operatorname{ker}(\alpha(q))
$$

for all $q \in U$ and $\alpha \wedge d \alpha \neq 0$ for all $q \in U$.
a) Prove that if M has a contact structure, then M is orientable.
b) Prove that a contact structure Δ is not involutive.
c) Give an example of a contact structure on \mathbb{R}^{3}.

Problem 3. Prove or disprove the following statements:
a) If M is a compact, orientable, n-dimensional manifold (without boundary) then $H_{d R}^{n}(M) \neq 0$.
b) If M is a compact, 2-dimensional manifold (without boundary) then there exists a $C^{\infty} \operatorname{map} F: \mathbb{R}^{3} \rightarrow \mathbb{R}$ such that 0 is a regular value of F and $M \cong F^{-1}(0)$.

Problem 4. Let M be a smooth manifold and $X \in \mathcal{X}(M)$, a C^{∞} vector field on M.
a) Prove that if M is compact then X is complete.
b) Find the one-parameter group of diffeomorphisms (flow) of S^{2} defined by the restriction to S^{2} of the vector field in \mathbb{R}^{3} :

$$
X=z \frac{\partial}{\partial x}-x \frac{\partial}{\partial z}
$$

Problem 5. Let M be an open set of \mathbb{R}^{2} with the Riemannian metric whose matrix in the standard frame $\partial_{x}, \partial_{y}$ is given by:

$$
\left(\begin{array}{cc}
\lambda(x, y) & 0 \\
0 & \lambda(x, y)
\end{array}\right)
$$

where λ is a positive, smooth function on M.
a) Compute $\operatorname{grad}(f)$, for $f \in C^{\infty}(M)$ in terms of the standard frame $\partial_{x}, \partial_{y}$.
b) Compute $\operatorname{div}(X)$, where $X \in \mathcal{X}(M)$ is a C^{∞} vector field on M.
c) Compute the Laplacian $\Delta(f)$, where $f \in C^{\infty}(M)$.

Problem 6. We identify \mathbb{R}^{3} with the three-dimensional Heisenberg group:

$$
G=\left\{\left(\begin{array}{ccc}
1 & x & z \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right): x, y, z \in \mathbb{R}\right\} \subset G L(3, \mathbb{R})
$$

a) Find a basis (frame) of left-invariant vector fields on $G \cong \mathbb{R}^{3}$.
b) Find a nowhere-zero, left-invariant form of degree 3 on $G \cong \mathbb{R}^{3}$.

Problem 7. Let $H=\left\{(x, y) \in \mathbb{R}^{2}: y>0\right\}$ be the upper half-plane with the Poincaré metric:

$$
g=y^{-2}(d x \otimes d x+d y \otimes d y)
$$

a) Find the geodesic through the point $p=(0,1)$ whose tangent vector at p is the vector $(0, a)$.
b) Prove that for every $q \in H$ and every $v \in T_{q}(H)$ there exists a (globally defined) geodesic

$$
\gamma: \mathbb{R} \rightarrow H
$$

such that $\gamma(0)=q$ and $\gamma^{\prime}(0)=v$.
Problem 8. Let M be the surface in \mathbb{R}^{2} defined by:

$$
M=\{(u \cos v, u \sin v, v): u, v \in \mathbb{R}\} \subset \mathbb{R}^{3}
$$

with the metric induced by \mathbb{R}^{3}.
a) Compute the Gaussian curvature of M.
b) Given that the Christoffel symbols of M relative to the coordinates (u, v) are all zero except:

$$
\Gamma_{12}^{2}=\Gamma_{21}^{2}=\frac{u}{1+u^{2}} ; \quad \Gamma_{22}^{1}=-u
$$

find the geodesic, parametrized by arc-length, joining the points $(0,0,0)$ and $(0,0,1)$ in M.

