University of Massachusetts Department of Mathematics and Statistics Advanced Exam in Geometry August 2010

Do 5 out of the following 8 problems. Indicate clearly which questions you want graded. *Passing standard:* 70% with three problems essentially complete. **Justify all your answers.**

Problem 1. Let M be an n-dimensional manifold and $N \subset M$ an embedded submanifold of codimension k.

- a) Prove that the tangent bundle TN may be regarded as an embedded submanifold of TM of codimension 2k.
- **b)** Find equations that describe TS^{n-1} , implicitly, as an embedded submanifold of $T\mathbb{R}^n \cong \mathbb{R}^{2n}$. That is, find a smooth map $F \colon \mathbb{R}^{2n} \to \mathbb{R}^2$, having $0 \in \mathbb{R}^2$ as a regular value, and such that

$$TS^{n-1} = F^{-1}(0).$$

Verify that the map you defined satisfies the required conditions.

Problem 2. Let M be a three-dimensional manifold. A contact structure on M is a two-dimensional C^{∞} distribution Δ on M which, locally, is given as $\Delta = \ker(\alpha)$, where α is a one-form such that $\alpha \wedge d\alpha \neq 0$ everywhere in the open set where α is defined. That is, for every $p \in M$ there exists an open set U containing p and a one-form α defined on U such that

$$\Delta(q) = \ker(\alpha(q)),$$

for all $q \in U$ and $\alpha \wedge d\alpha \neq 0$ for all $q \in U$.

- a) Prove that if M has a contact structure, then M is orientable.
- **b**) Prove that a contact structure Δ is not involutive.
- c) Give an example of a contact structure on \mathbb{R}^3 .

Problem 3. Prove or disprove the following statements:

- a) If M is a compact, orientable, n-dimensional manifold (without boundary) then $H^n_{dR}(M) \neq 0$.
- b) If M is a compact, 2-dimensional manifold (without boundary) then there exists a C^{∞} map $F \colon \mathbb{R}^3 \to \mathbb{R}$ such that 0 is a regular value of F and $M \cong F^{-1}(0)$.

Problem 4. Let M be a smooth manifold and $X \in \mathcal{X}(M)$, a C^{∞} vector field on M.

- a) Prove that if M is compact then X is complete.
- b) Find the one-parameter group of diffeomorphisms (flow) of S^2 defined by the restriction to S^2 of the vector field in \mathbb{R}^3 :

$$X = z \frac{\partial}{\partial x} - x \frac{\partial}{\partial z}.$$

$$egin{pmatrix} \lambda(x,y) & 0 \ 0 & \lambda(x,y) \end{pmatrix} \,,$$

where λ is a positive, smooth function on M.

- **a)** Compute grad(f), for $f \in C^{\infty}(M)$ in terms of the standard frame ∂_x, ∂_y .
- **b)** Compute div(X), where $X \in \mathcal{X}(M)$ is a C^{∞} vector field on M.
- c) Compute the Laplacian $\Delta(f)$, where $f \in C^{\infty}(M)$.

Problem 6. We identify \mathbb{R}^3 with the three-dimensional Heisenberg group:

$$G = \left\{ \begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} \ : \ x, y, z \in \mathbb{R} \right\} \subset GL(3, \mathbb{R}).$$

- **a)** Find a basis (frame) of left-invariant vector fields on $G \cong \mathbb{R}^3$.
- **b**) Find a nowhere-zero, left-invariant form of degree 3 on $G \cong \mathbb{R}^3$.

Problem 7. Let $H = \{(x, y) \in \mathbb{R}^2 : y > 0\}$ be the upper half-plane with the Poincaré metric:

$$g = y^{-2}(dx \otimes dx + dy \otimes dy).$$

- a) Find the geodesic through the point p = (0, 1) whose tangent vector at p is the vector (0, a).
- b) Prove that for every $q \in H$ and every $v \in T_q(H)$ there exists a (globally defined) geodesic

$$\gamma\colon \mathbb{R}\to H$$

such that $\gamma(0) = q$ and $\gamma'(0) = v$.

Problem 8. Let *M* be the surface in \mathbb{R}^2 defined by:

 $M = \{(u \cos v, u \sin v, v) : u, v \in \mathbb{R}\} \subset \mathbb{R}^3$

with the metric induced by \mathbb{R}^3 .

- a) Compute the Gaussian curvature of M.
- b) Given that the Christoffel symbols of M relative to the coordinates (u, v) are all zero except:

$$\Gamma_{12}^2 = \Gamma_{21}^2 = \frac{u}{1+u^2}; \quad \Gamma_{22}^1 = -u,$$

find the geodesic, parametrized by arc-length, joining the points (0, 0, 0) and (0, 0, 1) in M.