University of Massachusetts
 Department of Mathematics and Statistics Advanced Exam in Geometry August 2005

Do 5 out of the following 8 problems. Indicate clearly which questions you want graded. Passing standard: 70% with three problems essentially complete. Justify all your answers.
(1) (a) Prove that a compact Riemannian manifold is geodesically complete.
(b) Give a counterexample to the converse of the previous statement.
(c) Give an example showing that a noncompact Riemannian manifold need not be geodesically complete.
(2) Define two vector fields in $\mathbf{R}^{3}-\{x=0 \cup y=0\}$ by

$$
X=\partial_{x}-\frac{z}{x} \partial_{z}, \quad Y=\partial_{y}-\frac{z}{y} \partial_{z} .
$$

(a) Show that this pair of vector fields gives an involutive distribution in the positive orthant

$$
\mathbf{R}_{+}^{3}=\{(x, y, z) \mid x, y, z>0\}
$$

(b) Describe the integral submanifold through any point in \mathbf{R}_{+}^{3}.
(c) Sketch the integral submanifold through $(1,1,1)$.
(3) Let $U \subset G L_{3}(\mathbf{R})$ be the subgroup of upper-triangular matrices with determinant one. For coordinates on U, use the restriction of the standard coordinate functions $x_{i j}$ on $G L_{3}(\mathbf{R})$.
(a) Show that U is a Lie subgroup and describe its Lie algebra.
(b) Explicitly compute a basis of left-invariant vector fields on U in terms of the basic frame $\left\{\partial_{x_{i j}}\right\}$.
(c) Explicitly compute a basis of left-invariant 1-forms on U in terms of the basic coframe $\left\{d x_{i j}\right\}$.
(4) Let X be the subset of $\mathbf{P}^{m+n+1}(\mathbf{R})$ given by the zero set of the polynomial $x_{0}^{2}+$ $\cdots+x_{m}^{2}-y_{0}^{2}-\cdots-y_{n}^{2}$.
(a) Show that X is a manifold diffeomorphic to $S^{m} \times S^{n}$.
(b) Compute the De Rham cohomology groups $H^{*}(X)$.
(5) Let M be a manifold with De Rham cohomology groups $H^{*}(M)$. Suppose $\alpha \in$ $H^{p}(M)$ is represented by the differential form $\eta, \beta \in H^{q}(M)$ is represented by the form θ, and $\gamma \in H^{r}(M)$ is represented by the form ψ. Suppose also that there exist differential forms ω_{1}, ω_{2} such that $\eta \wedge \theta=d \omega_{1}$ and $\theta \wedge \psi=d \omega_{2}$.
(a) Show that the differential form $\zeta:=\eta \wedge \omega_{2}-(-1)^{p} \omega_{1} \wedge \psi$ is closed.
(b) Show that the cohomology class of ζ depends only on the classes of α, β, γ, and not on the forms η, θ, ψ representing these classes.
(6) Let M be a manifold.
(a) Define what it means for a vector bundle $E \rightarrow M$ to be trivial.
(b) What is the relationship between triviality of vector bundles and parallelizability of a manifold M ?
(c) Show that if E, E^{\prime} are two trivial vector bundles over M, then $E \oplus E^{\prime}$ is trivial.
(d) If $E \rightarrow M$ is a vector bundle and $E \oplus E$ is trivial, is E trivial? What if $E \otimes E$ is trivial?
(7) Let $X \subset \mathbf{R}^{3}$ be the torus with parameterization
$((a+b \cos u) \cos v,(a+b \cos u) \sin v, b \sin u), \quad 0<b<a, \quad(u, v) \in \mathbf{R}^{2}$.
Give X the induced metric.
(a) Compute $* d u, * d v$, and $*(d u \wedge d v)$.
(b) Compute a local expression in the coordinates (u, v) for the Laplacian operator Δ on functions and 2-forms.
(8) Consider the sequence of surfaces

$$
S_{n}=\left\{(x, y, z) \mid z=\left(x^{2}+y^{2}\right)^{n}\right\}, \quad n \geq 1
$$

(a) Write a parameterzation of S_{n}.
(b) Compute the Gaussian curvature of S_{n} in terms of the coordinates you chose in part (a).
(c) All the S_{n} pass through the point $(1,0,1)$. What happens to the sequence of Gaussian curvatures at this point as $n \rightarrow \infty$? Explain why this is geometrically plausible.

