## University of Massachusetts Department of Mathematics and Statistics Advanced Exam in Geometry September 1, 2004

Do 5 out of the following 7 questions. Indicate clearly which questions you want to have graded. *Passing standard:* 70% with three problems essentially complete. **Justify all your answers.** 

**Problem 1.** Let  $f: \mathbb{R}^2 \to \mathbb{R}^3$  be given by

$$f(u, v) = (\sinh u \cos v, \sinh u \sin v, v).$$

- a) Show that  $M = f(\mathbb{R}^2) \subset \mathbb{R}^3$  is a 2-dimensional submanifold.
- **b)** Compute the Gaussian curvature of M with the metric induced from  $\mathbb{R}^3$ .
- c) Write the geodesic equations for M and determine if, suitably parametrized, any of the coordinate curves  $\{u = \text{constant}\}\$  or  $\{v = \text{constant}\}\$  are geodesics on M.
- d) Draw a picture of the surface M.

**Problem 2.** A 2n-dimensional manifold (M, g) is said to be symplectic if there exists a closed 2-form  $\omega$  on M such that

$$\omega^n := \overbrace{\omega \wedge \cdots \wedge \omega}^{n \text{ times}}$$

is nowhere zero. Determine which of the following 4-manifolds are symplectic. Justify your answers.

- a)  $\mathbb{R}^4$ .
- **b**)  $S^4$ .
- c)  $S^2 \times S^2$ .

**Problem 3.** Consider the vector fields  $V = z \frac{\partial}{\partial x} + x \frac{\partial}{\partial z}$  and  $W = y \frac{\partial}{\partial x} - x \frac{\partial}{\partial y}$  on  $\mathbb{R}^3$ .

- a) Determine the open set  $U \subset \mathbb{R}^3$  over which V and W span a 2-dimensional distribution, i.e., a rank 2 subbundle  $E \subset TU$  of the tangent bundle TU.
- **b)** Find a 1-form  $\alpha$  in U such that

$$E(p) = \{X \in T_p(U) : \alpha(p)(X) = 0\} \subset T_p(U) ; \text{ for all } p \in U.$$

- c) Show that E is integrable.
- $\mathbf{d}$ ) Find the integral submanifolds of E.

**Problem 4.** Let X be the  $C^{\infty}$  vector field on  $\mathbb{R}^{n+1}\setminus\{0\}$ :

$$X = \sum_{i=0}^{n+1} x_i \frac{\partial}{\partial x_i}.$$

- a) Prove that X is a complete vector field and compute the one-parameter group of diffeomorphisms (flow) of X.
- **b)** Let  $\pi: \mathbb{R}^{n+1} \setminus \{0\} \to \mathbb{P}^n$  denote the natural projection. Show that for every  $\alpha \in \Lambda^k(\mathbb{P}^n)$ ,  $1 \le k \le n$ ,

$$\iota_X\left(\pi^*(\alpha)\right) = 0.$$

**Problem 5.** Let  $\mathbb{R}^3$  be endowed with the Heisenberg product:

$$(x', y', z') * (x, y, z) := (x' + x, y' + y, z' + z + x'y)$$

You may assume as given that  $(\mathbb{R}^3, *)$  is a Lie group.

- a) Find a basis of left-invariant vector fields for  $(R^3,*)$ . Express your answer in terms of the coordinate frame  $\{\partial/\partial x, \partial/\partial y, \partial/\partial z\}$ .
- **b)** Find a basis of left-invariant 1-forms on  $(R^3, *)$ . Express your answer in terms of the coordinate coframe  $\{dx, dy, dz\}$ .
- c) Find a left-invariant metric on  $(R^3, *)$ . Express your answer in terms of the coordinate coframe  $\{dx, dy, dz\}$ .
- d) Let  $\{\omega_j^i; 1 \leq i, j \leq 3\}$  denote the connection forms of the Riemannian (Levi-Civita) connection of the metric constructed in part c) relative to the left-invariant frame constructed in part a). Show that

$$\omega_i^i + \omega_i^j = 0.$$

**Problem 6.** Prove or disprove the following statements:

- a) Let  $\alpha \in \Lambda^1(S^2)$  and suppose  $T^*(\alpha) = \alpha$  for all  $T \in SO(3)$ . Then  $\alpha = 0$ .
- **b)** If *n* is odd then every *n*-form  $\alpha \in \Lambda^n(\mathbb{P}^n)$  vanishes at some point.
- c) If  $f: \mathbb{R}^n \to \mathbb{R}$  is a submersion, then  $M = f^{-1}(0)$  is an orientable manifold.

**Problem 7.** Let  $E \to M$  be a real vector bundle of rank r with connection  $\nabla$ . Show that the following statements are equivalent:

- a)  $\nabla$  is flat, i.e., its curvature  $R^{\nabla} = 0$ .
- b) Near each point there is an open neighborhood  $U \subset M$  and a local framing  $(\psi_1, \ldots, \psi_r)$  of E over U such that  $\nabla \psi_k = 0$ , i.e., all the local sections  $\psi_k$  of the frame are parallel.