UNIVERSITY OF MASSACHUSETTS Department of Mathematics and Statistics ADVANCED EXAM - LINEAR MODELS August 26, 2013 (3 hours)

- Do all problems.
- Start each problem on a new page.
- A total of 70 points is needed to pass.
 - 1. (15 points) Consider a general linear model

$$\underline{Y} = X\underline{\beta} + \underline{\varepsilon},$$

where \underline{Y} is $n \times 1$; X is $n \times p$ with rank $r(\leq p)$; $\underline{\beta}$ is $p \times 1$, and $\underline{\varepsilon}$ is an n-dimensional random vector with $\mathbf{E}(\underline{\varepsilon}) = \underline{0}$.

- (a) Define what it means for $\underline{c'\beta}$ to be estimable and show that $\underline{c'\beta}$ is estimable if and only if $\underline{c'}$ is a vector in the linear space generated by the row vectors of X.
- (b) State and PROOF the Gauss-Markov theorem which relates an estimable linear function of β with its BLUE, for $Cov(\underline{\varepsilon}) = \sigma^2 I$.
- 2. (20 points) Consider the linear model $Y_i = \beta X_i + \varepsilon_i$ where $E(\varepsilon_i) = 0$ and $Var(\varepsilon_i) = \sigma^2$ with β and X_i scalars. The X_i are not random.
 - (a) Write out explicitly in terms of the Y's and X's; what the least squares estimator of β is (call it $\hat{\beta}$) and give an explicit expression for $\text{Var}(\hat{\beta})$. Also give an expression for $\hat{\sigma}^2$, the optimal unbiased estimate.
 - (b) An alternate estimator arises by considering $Z_i = Y_i/X_i$.
 - i. Show that $\overline{Z} = \sum_{i=1}^{n} Z_i/n$ is an unbiased estimator for β .
 - ii. Find the variance of \overline{Z} and show directly that this variance is greater than or equal to the variance of $\widehat{\beta}$.
 - iii. Why else (other than your result in (ii) above) do you know that the variance of \overline{Z} is greater than or equal to the variance of $\widehat{\beta}$?
- 3. (10 points) Let $y \sim N(\mu, \Sigma), r = y'Ay$, and s = By, where A is a symmetric matrix.
 - (a) Prove that if $B\Sigma A = 0$ then r and s are independent.
 - (b) Use the result from part a to show that the sample mean and sample variance of y are independent.

4. (10 points) An experiment was run to compare three different primitive altimeters (an altimeter is a device which measures altitude). Each of three pilots used each of three altimeters and the response is the error in reading.

	Altimeter		
	1	2	3
Pilot 1	3	4	7
Pilot 2	6	5	8
Pilot 3	3	4	7

We assume first that the three pilots are FIXED factor levels, and consider it as a two-way fixed effects model with interactions.

- (a) Plot these 9 observations to see any indication of Pilot-Altimeter interactions (no computation)? What should the graph look like if there is no interaction?
- (b) If the design is considered as a two fixed effects design. How will you intepret the the main effects of the altimeters if they are used by the three pilots?
- 5. (45 points) Let Y_{ij} , $j=1,2,\ldots,n_i$, $i=1,2,\ldots,m$ be observable r.v.'s such that

$$Y_{ij} = \alpha_0 + \alpha_i + \varepsilon_{ij},$$

where the α 's are unknown parameters, the ε_{ij} are i.i.d. $N(0, \sigma^2)$ unobservable r.v.s, and $\sigma^2 > 0$ is unknown.

- (a) Let $\psi = \sum_{i=0}^{m} \ell_i \alpha_i$ with ℓ_i being specified constants. Show that ψ is estimable if and only if $\ell_0 = \sum_{i=1}^{m} \ell_i$.
- (b) Define $\mu_i = \alpha_0 + \alpha_i$, i = 1, 2, ..., m, which will be used for all the following questions as well. Write down the least squares estimates for the μ 's. Are they UMVUE's? Why? (Explain briefly). Write down also the MLE, $\tilde{\sigma}^2$ of σ^2 (no need to prove the results), and the unbiased estimator $\hat{\sigma}^2$ obtained from the MLE.
- (c) Use the full-reduced model approach to construct the F test for testing H_0 : all μ_i are equal versus H_1 : at least two μ_i are different, using a test of size α . Write out the F-statistic explicitly and state the distribution of the test statistic, under both null and alternative hypotheses.
- (d) Here we are interested in simultaneous confidence intervals, with confidence 1α , for all pairwise differences in the means; e.g., differences $\mu_j \mu_{j'}$, $j \neq j'$.
 - i. Give Bonferroni's inequality and explain how it is used to construct simultaneous confidence intervals. (No need to prove anything you can just write down the result.) Be complete.

- ii. For $n_i = n$ (i = 1, ..., m), define the studentized range distribution and use it to derive Tukey's method for the problem at hand.
- iii. How would you decide which of the two methods is better here? Why is the Bonferroni method so popular in simultaneous confidence intervals?
- (e) For this question, suppose there is a variable associated with each of the groups (e.g., a dose of some sort) with x_i denoting the value for group i, each $x_i > 0$ and all the x_i being different.
 - i. If it is known that $V(\epsilon_{ij}) = \sigma^2 x_i$, explain how you could transform the model to make optimal inferences on the μ 's. Could you use a standard one-way analysis of variance routine found in the statistical packages or would you need a general regression package? Explain.
 - ii. Now suppose the x_i values are used to model the mean with the assumption that $\mu_i = \beta_0 + \beta_1 x_i$, but return to assuming that $V(\varepsilon_{ij}) = \sigma^2$.
 - A. Write the model as $\underline{Y} = X\underline{\beta} + \underline{\varepsilon}$. Write down the least squares estimate of $\underline{\beta}$ in terms of \underline{Y} and X and the UMVUE for σ^2 . No need to simplify these.
 - B. Use the full-reduced model approach to develop the F-test for the null hypothesis of $H_0: \mu_i = \beta_0 + \beta_1 x_i$ versus $H_A:$ the μ_i are not a linear function of the x_i , but change over i in some unspecified way (This is just the model in part (b)). This is a test for "lack of fit". Lay out the general calculation and the degrees of freedom associated with the test, but there is no need to simply the expression.

