Department of Mathematics and Statistics University of Massachusetts Amherst

Topology Qualifying Exam

January 2022

Answer all six questions. Justify your answers. Passing standard: 70% with four questions essentially complete.

- 1. Let $Z = X \times Y$ be the product space of topological spaces X and Y. Prove the following:
 - (a) Z is path-connected if and only if X and Y are path-connected.
 - (b) Z is compact if and only if both X and Y are compact.

(Here you are asked to prove these fundamental results; do not just quote theorems which contain these statements.)

- 2. Let X be a connected non-empty metric space. Show that either X consist of a single point or $X \setminus \{x\}$ is not compact for any point $x \in X$. Is there a more general topological property that can replace X being a metric space so that the same statement still holds?
- 3. (a) Let $p: \tilde{X} \to X$ be a covering map, Y be a connected space, $y_0 \in Y$. Let $f, g: Y \to \tilde{X}$ be continuous maps such that $f(y_0) = g(y_0)$ and $p \circ f = p \circ g$. Conclude that f = g.
 - (b) Show that the Möbius band does not retract onto its boundary circle.
- 4. Let Σ_2 be the closed orientable genus 2-surface, which is the connected sum $\Sigma_2 = T^2 \# T^2$.
 - (a) Find a presentation for $\pi_1(\Sigma_2)$. (Use a CW decomposition or Seifert Van-Kampen.)
 - (b) Show that $\pi_1(\Sigma_2)$ surjects onto the free group $\mathbb{Z}*\mathbb{Z}$ to conclude that it is not abelian.
 - (c) Is there any covering map from Σ_2 to T^2 ? Prove your claim.
- 5. Let $M = \mathbb{CP}^2 \# S^1 \times S^3$, i.e. the connected sum of these 4-manifolds. Calculate the fundamental group and the integral homology groups of M. Explain if M is orientable.
- 6. Let $X = S^2 \times S^4$ and $Y = \mathbb{CP}^2 \vee S^6$.
 - (a) Using CW decompositions, calculate the homology groups $H_i(X)$ and $H_i(Y)$.
 - (b) Show that $H^i(X;G) \equiv H^i(Y;G)$ for any coefficient group G.
 - (c) Prove that X and Y are not homotopy equivalent.