UNIVERSITY OF MASSACHUSETTS

Department of Mathematics and Statistics Advanced Qualifying Exam - Stochastic Processes Monday, 10:00 am-1:00 pm, Jan 18, 2022

Instructions:

- This exam consists of five (5) problems (each of equal weight 20).
- In order to pass this exam, it is enough that you solve essentially correctly at least three (3) problems and that you have an overall score of at least 65%.
- State explicitly all results that you use in your proofs and verify that these results apply.
- Please write your work and answers clearly in the blank space under each question.

1. Suppose X and Y have a joint PDF

$$f(x,y) = \frac{1}{8\pi} \begin{cases} 4 - x^2 - y^2 & \text{if } x^2 + y^2 \le 4, \\ 0 & \text{otherwise.} \end{cases}$$

- **a.** Calculate $P(X^2 + Y^2 \le 1)$.
- **b.** Calculate the marginal PDF for X alone.
- **c.** Are X and Y correlated? Find the covariance between X and Y.
- **d.** Find an event depending on X alone whose probability depends on Y. Use this to show that X is not independent of Y.

- 2. Suppose that \mathcal{F} and \mathcal{G} are two algebras of sets and that \mathcal{G} adds information to \mathcal{F} in the sense that any \mathcal{F} measureable event is also \mathcal{G} measurable. Since \mathcal{F} and \mathcal{G} are collections of events, this may be written $\mathcal{F} \subset \mathcal{G}$. Suppose that Ω is a probability space Ω iand that $X(\omega)$ is a variable defined on Ω (that is, a function of the random variable ω). The conditional expectations (in the modern sense) of X with respect to \mathcal{F} and \mathcal{G} are $Y = E[X \mid \mathcal{F}]$ and $Z = E[X \mid \mathcal{G}]$. In each case below, state whether the statement is true or false and explain your answer with a proof or a counterexample. (Hint: you can assume Ω is finite when building counterexamples)
 - a. $Z \in \mathcal{F}$.
 - **b.** $Y \in \mathcal{G}$.
 - c. $Z = E[Y \mid \mathcal{G}].$
 - $\mathbf{d.} \ Y = E[Z \mid \mathcal{F}].$

- 3. Suppose that $X = \{X_1, X_2, \dots, X_n, \dots\}$ is an i.i.d. sequence of random variables, which are uniformly distributed in the interval [0, 1].
 - a. Define the random variable

$$Y = \min\{X_1, X_2\}.$$

Find P(Y > y).

- **b.** For a sequence of random variable $\{X_1, X_2, \cdots, X_n, \cdots\}$. Give the definition that $X_n \to X$ in probability, as $n \to \infty$.
- **c.** Let $\mathbf{Y} = \{Y_1, Y_2, \cdots, Y_n, \cdots\}$ be the sequence of random variables given by $Y_n = \min\{X_1, \cdots, X_n\}, n \geq 1$. Show that Y_n converges in probability to 0 as $n \to \infty$.

4. A coin with probability p of heads is flipped repeatedly. X_n is the result of the n-th coin flip (n = 1 is the first coin flip). Let

$$\tau = \inf \{ n > 1 \colon (X_{n-1}, X_n) = (H, T) \},\,$$

corresponding to the first time at which we see a heads (H) followed by a tails (T).

- (a) Use 4 states $S = \{HH, HT, TH, TT\}$. Write the transition matrix using these 4 states.
- (b) Modify this matrix according to our stochastic processes $\{X_n\}$, and thus derive the transition probability matrix P. Hint: still use these 4 states. But the transition matrix is slightly different from above.
- (c) Give an expression for $\mathbb{P}(\tau \leq n)$ (**Hint**: try to write $\mathbb{P}(\tau \leq n) = \mu^{\mathsf{T}} P^n \nu$ for appropriately chosen column vectors μ and ν).

5. Let g(x) be a continuous function defined for $x \in [0,1]$ with values in [0,1]. Describe the Monte Carlo method to estimate the integral $A = \int_{[0,1]} g(x) dx$ using a sequence of random variables Y_n . Prove that for any $\epsilon > 0$, $P(|Y_n - A| \ge \epsilon) \le \frac{C}{n\epsilon^2}$ for some constant C > 0.