UNIVERSITY OF MASSACHUSETTS<br>Department of Mathematics and Statistics<br>Advanced Qualifying Exam - Stochastic Processes<br>Monday, 10:00 am-1:00 pm, Jan 18, 2022

## Instructions:

- This exam consists of five (5) problems (each of equal weight 20).
- In order to pass this exam, it is enough that you solve essentially correctly at least three (3) problems and that you have an overall score of at least $65 \%$.
- State explicitly all results that you use in your proofs and verify that these results apply.
- Please write your work and answers clearly in the blank space under each question.

1. Suppose $X$ and $Y$ have a joint PDF

$$
f(x, y)=\frac{1}{8 \pi}\left\{\begin{array}{cl}
4-x^{2}-y^{2} & \text { if } x^{2}+y^{2} \leq 4 \\
0 & \text { otherwise }
\end{array}\right.
$$

a. Calculate $P\left(X^{2}+Y^{2} \leq 1\right)$.
b. Calculate the marginal PDF for $X$ alone.
c. Are $X$ and $Y$ correlated? Find the covariance between $X$ and $Y$.
d. Find an event depending on $X$ alone whose probability depends on $Y$. Use this to show that $X$ is not independent of $Y$.
2. Suppose that $\mathcal{F}$ and $\mathcal{G}$ are two algebras of sets and that $\mathcal{G}$ adds information to $\mathcal{F}$ in the sense that any $\mathcal{F}$ measureable event is also $\mathcal{G}$ measurable. Since $\mathcal{F}$ and $\mathcal{G}$ are collections of events, this may be written $\mathcal{F} \subset \mathcal{G}$. Suppose that $\Omega$ is a probability space $\Omega$ iand that $X(\omega)$ is a variable defined on $\Omega$ (that is, a function of the random variable $\omega$ ). The conditional expectations (in the modern sense) of $X$ with respect to $\mathcal{F}$ and $\mathcal{G}$ are $Y=E[X \mid \mathcal{F}]$ and $Z=E[X \mid \mathcal{G}]$. In each case below, state whether the statement is true or false and explain your answer with a proof or a counterexample. (Hint: you can assume $\Omega$ is finite when building counterexamples)
a. $Z \in \mathcal{F}$.
b. $Y \in \mathcal{G}$.
c. $Z=E[Y \mid \mathcal{G}]$.
d. $Y=E[Z \mid \mathcal{F}]$.
3. Suppose that $X=\left\{X_{1}, X_{2}, \cdots, X_{n}, \cdots\right\}$ is an i.i.d. sequence of random variables, which are uniformly distributed in the interval $[0,1]$.
a. Define the random variable

$$
Y=\min \left\{X_{1}, X_{2}\right\} .
$$

Find $P(Y>y)$.
b. For a sequence of random variable $\left\{X_{1}, X_{2}, \cdots, X_{n}, \cdots\right\}$. Give the definition that $X_{n} \rightarrow X$ in probability, as $n \rightarrow \infty$.
c. Let $\mathbf{Y}=\left\{Y_{1}, Y_{2}, \cdots, Y_{n}, \cdots\right\}$ be the sequence of random variables given by $Y_{n}=$ $\min \left\{X_{1}, \cdots, X_{n}\right\}, n \geq 1$. Show that $Y_{n}$ converges in probability to 0 as $n \rightarrow \infty$.
4. A coin with probability $p$ of heads is flipped repeatedly. $X_{n}$ is the result of the $n$-th coin flip ( $n=1$ is the first coin flip). Let

$$
\tau=\inf \left\{n>1:\left(X_{n-1}, X_{n}\right)=(H, T)\right\}
$$

corresponding to the first time at which we see a heads $(H)$ followed by a tails $(T)$.
(a) Use 4 states $S=\{H H, H T, T H, T T$. Write the transition matrix using these 4 states.
(b) Modify this matrix according to our stochastic processes $\left\{X_{n}\right\}$, and thus derive the transition probability matrix $P$. Hint: still use these 4 states. But the transition matrix is slightly different from above.
(c) Give an expression for $\mathbb{P}(\tau \leq n)$ (Hint: try to write $\mathbb{P}(\tau \leq n)=\mu^{\top} P^{n} \nu$ for appropriately chosen column vectors $\mu$ and $\nu$ ).
5. Let $g(x)$ be a continuous function defined for $x \in[0,1]$ with values in $[0,1]$. Describe the Monte Carlo method to estimate the integral $A=\int_{[0,1]} g(x) d x$ using a sequence of random variables $Y_{n}$. Prove that for any $\epsilon>0, P\left(\left|Y_{n}-A\right| \geq \epsilon\right) \leq \frac{C}{n \epsilon^{2}}$ for some constant $C>0$.

