
UNIVERSITY OF MASSACHUSETTS
Department of Mathematics and Statistics

Basic Exam - Probability
Tuesday, January 18, 2022

Work all problems. 60 points are needed to pass at the Masters Level and 75 to pass at the
Ph.D. level.

1. Suppose that a system has n parts. Let Xi be the lifetime of the i-th part of the
system where i = 1, . . . , n. Suppose that X1, . . . , Xn are independent and that Xi has
an exponential distribution with mean θ hours:

f(xi | θ) =
1

θ
exp

(
−xi
θ

)
,

where xi > 0, θ > 0, E(Xi) = θ, V ar(Xi) = θ2, and the moment generating function
of Xi is MXi

(t) = (1− θt)−1 for t < 1/θ.

(a) Let Y =
∑n

i=1Xi be the total lifetime of the n parts. Find the exact distribution
of Y .

(b) Now, suppose we have 81 parts (n=81) and θ = 18. Approximate the probability
that the average lifetime of the 81 parts is between 14 and 16 hours. You can
leave the final answer in terms of an integral.

(c) The system works only if all n parts work. Let W be the lifetime of the system:
W= the minimum of X1, . . . , Xn. Find the exact distribution of W .

(d) Find the expected lifetime of the system using the result in (c).

2. Let X denote the number of claims in a fixed period of time from an insured in a
pool of insureds. We assume that X has a Poisson distribution with mean θ > 0.
Some insureds are good risks (with small θ) and some are poor risks (with large θ). In
order to reflect the risk characteristic of the insured, we regard θ as a random variable
whose distribution is a Gamma distribution with shape parameter α > 0 and scale
parameter β > 0. That is, the conditional distribution of X conditional on θ and the
unconditional distribution of θ are

f(x | θ) = exp(−θ)θ
x

x!
,

g(θ) =
1

Γ(α)βα
θα−1 exp

(
− θ
β

)
,

where x = 0, 1, . . ., E(θ) = αβ and V ar(θ) = αβ2.

(a) Compute the unconditional mean number of claims, E(X).
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(b) Compute the unconditional variance number of claims, V ar(X).

(c) Find the unconditional distribution of X.

3. Y1, . . . , Yn denote a random sample of size n from a distribution with probability density
function

f(y) =
2y

θ2
,

for 0 < y ≤ θ < ∞ and f(y) = 0, otherwise. Note that E(Y k
i ) = 2θk/(k + 2) for

k = 1, 2, . . . and i = 1, . . . , n.
We consider a statistic Ȳn = 1

n

∑n
i=1 Yi.

(a) Show that Ȳn converges in probability to 2θ
3

.

(b) Find the limiting distribution of
√
n
(
Ȳn − 2θ

3

)
. Does the variance of this limiting

distribution depend on θ?

(c) Find the limiting distribution of
√
n
(
log
(
Ȳn
)
− log

(
2θ
3

))
. Does the variance of

this limiting distribution depend on θ?

(d) Using the result in (c), find W1(Ȳn, n) and W2(Ȳn, n), two statistics as a function
of Ȳn and n, such that P [W1(Ȳn, n) ≤ θ ≤ W2(Ȳn, n)] is approximately 0.99
[Hint: P (Z > 1.644)=0.05, P (Z > 1.96)=0.025 and P (Z > 2.576)=0.005 where
Z ∼ N(0, 1)].

4. Let X and Y be jointly normal random variables with finite means E(X) and E(Y ),
finite variances V ar(X) and V ar(Y ), and finite covariance Cov(X, Y ).

(a) Consider the random variable Y − Cov(X,Y )
V ar(X)

X. Note that Cov(X,Y )
V ar(X)

is constant and
not random.
Show that the random variable Y − Cov(X,Y )

V ar(X)
X follows a normal distribution and

is independent of X.

(b) Using the result in (a), justify each of the steps in the following:

E(Y |X = x) = E

(
Y − Cov(X, Y )

V ar(X)
X +

Cov(X, Y )

V ar(X)
X

∣∣∣∣∣X = x

)
(1)

= E

(
Y − Cov(X, Y )

V ar(X)
X

)
+
Cov(X, Y )

V ar(X)
x (2)

= E(Y ) +
Cov(X, Y )

V ar(X)
(x− E(X)). (3)

(c) Now, assume that U and V are independent standard normal random variables.
Let W1 and W2 be random variables defined by W1 = U − 3V + 2 and W2 =
2U − 5V − 1, respectively. What is the joint distribution of (W1,W2)?

(d) Use the results in (b) and (c) to compute E(W1 | W2 = a) in terms of a where
W1 = U − 3V + 2 and W2 = 2U − 5V − 1.
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