Basic Exam: Advanced Calculus \& Linear Algebra

Department of Mathematics and Statistics
University of Massachusetts, Amherst
21 January 2022

Instructions: Do all the problems and show your work. The passing standards are:

- Master's level: 60% with three questions essentially, complete (including one question from each part);
- Ph.D. level: 75% with two questions from each part essentially complete.

Calculus

1. Evaluate $\int \frac{\ln (1+x)}{x^{3 / 2}} d x$. (Hint: At some point it will be useful that the derivative of $\arctan (t)$ is $1 /\left(1+t^{2}\right)$.)
2. Find the global maxima and minima of the function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ given by

$$
f(x, y, z)=5 x+y-3 z
$$

on the region

$$
X:=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x+y+z=0, x^{2}+y^{2}+z^{2}=1\right\}
$$

3. Consider the integral

$$
\int_{-3}^{3} \int_{-\sqrt{9-x^{2}}}^{\sqrt{9-x^{2}}} \int_{0}^{9-x^{2}-y^{2}} x^{2} d z d y d x
$$

Draw a picture of its domain of integration and then evaluate the integral. (Hint: Try using other coordinate systems.)
4. Let E_{r} denote the ellipse given by solutions to the equation $r^{2} x^{2}+y^{2}=r^{4}$. For $r>0$, let

$$
f(r)=\int_{E_{r}} \frac{-y}{x^{2}+y^{2}} d x+\frac{x}{x^{2}+y^{2}} d y
$$

a) State Green's theorem and use it to compute $f(r)-f(1)$ for any $r>1$.
b) Compute $f(1)$.
5. Let α be a real number that is not an integer. Associated to it is a sequence of numbers C_{k}^{α} where $C_{0}^{\alpha}=1, C_{1}^{\alpha}=\alpha$, and

$$
C_{k}^{\alpha}=\frac{\alpha(\alpha-1) \cdots(\alpha-k+1)}{k!}
$$

for k a natural number. Consider the power series

$$
F_{\alpha}(x)=\sum_{k=0}^{\infty} C_{k}^{\alpha} x^{k}
$$

a) Find the radius of convergence for F_{α}.
b) Show that F_{α} satisfies the differential equation

$$
(1+x) F_{\alpha}^{\prime}=\alpha F_{\alpha}
$$

c) Show that $G_{\alpha}(x)=(1+x)^{\alpha}$ also solves this differential equation. (Make sure to discuss how to properly define G_{α} as a function on the real line. What is exponentiation with a real number?) How are F_{α} and G_{α} related?

Linear Algebra

6. Let

$$
A=\left[\begin{array}{cccc}
-2 & 4 & -2 & 4 \\
2 & -6 & -3 & 1 \\
-3 & 8 & 2 & 1
\end{array}\right]
$$

a) If possible, find a solution for $A \mathbf{x}=\mathbf{e}_{\mathbf{1}}-\mathbf{e}_{\mathbf{2}}$. If not, explain why.
b) Find a basis for $\operatorname{Nul}(A)$ and $\operatorname{Row}(A)$, motivating your choice.
c) State the rank theorem relating the dimensions of $\operatorname{Col}(A)$ and $N u l(A)$ and verify that it holds for the matrix A.
7. Sulphur-crested cockatoos migrate each month between Adelaide, Brisbane, and Canberra. On average, their migration pattern is:

- 50% of the cockatoos in Adelaide remain in Adelaide, while 25% each go to Brisbane and Canberra.
- 50% of the cockatoos in Brisbane remain in Brisbane, and the rest go to Adelaide.
- 50% of the cockatoos in Canberra remain in Canberra, and the rest go to Adelaide.
a) If we write the populations in each city by alphabetical order, we get a column vector P of height 3. Write the matrix T that $T P$ is the expected population distribution next month.
b) Find the expected distribution of the sulphur-crested cockatoos population at month k, i.e., describe $T^{k} P$.
c) As $k \rightarrow \infty$, an equilibrium is reached. Describe the relative proportions between the three populations in this limit (i.e., the long time behavior of this dynamical system).

8. Let T be the linear transformation with standard matrix given by

$$
\left[\begin{array}{cccc}
0 & 0 & a & 1 \\
1 & 1 & -8 & 4 \\
0 & 0 & b & c \\
0 & 3 & -2 & -1
\end{array}\right] .
$$

a) What is the domain of T ? And the codomain?
b) For which values of a and b is T one-to-one?
c) For which values of a and b is T onto?
d) For which values of a and b is T invertible?
9. Let E be the ellipse whose equation is given by

$$
4 x_{1}^{2}+4 x_{1} x_{2}+2 x_{2}^{2}=1
$$

a) Find a linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ such that $T(E)$ is the circle in \mathbb{R}^{2} centered at the origin and with radius $\frac{1}{2}$. (Hint: It may be useful to rewrite $2 x_{2}^{2}$ in an equivalent form.)
b) Find the area of the region in \mathbb{R}^{2} bounded by the ellipse E.
10. Say if each of the following is true or false, giving justifications or counterexamples as appropriate.
a) If \mathbf{v} is an eigenvector for an $n \times n$-matrix A and for an $n \times n$-matrix B, then \mathbf{v} is also an eigenvector for the matrix $B A+I_{n}$.
b) There exists a matrix M with real coefficients such that

$$
M^{4}=\left[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right]
$$

c) If a nonzero vector \mathbf{v} belongs to the orthogonal complement of $\operatorname{Span}\{\mathbf{w}\}$ and \mathbf{w} is a nonzero vector, then \mathbf{w} cannot be a scalar multiple of \mathbf{v}.

