UNIVERSITY OF MASSACHUSETTS
 DEPARTMENT OF MATHEMATICS AND STATISTICS
 ADVANCED EXAM - STATISTICS (II)
 10:00 AM - 1:00 PM, August 27, 2021

Work all problems and show all work. Explain your answers. State the theorems used whenever possible. 70 points are required to pass.

1. Let $\left\{X_{n}\right\}_{n \geq 1}$ be a sequence of real-valued random variables with distribution function $F_{n}(x)$ for each n and X be another real-valued random variable with distribution function $F(x)$.
(a) (3 points) State the definition of almost sure convergence (denoted as $X_{n} \xrightarrow{\text { a.s. }} X$).
(b) (3 points) State the definition of convergence in a th mean (denoted as $X_{n} \xrightarrow{a} X$).
(c) (3 points) State the definition of convergence in probability (denoted as $X_{n} \xrightarrow{P} X$).
(d) (3 points) State the definition of convergence in distribution (denoted as $X_{n} \xrightarrow{d} X$).
(e) (5 points) Prove that for fixed $a>0, X_{n} \xrightarrow{a} X$ implies $X_{n} \xrightarrow{P} X$.
(f) (6 points) Show that $\bar{X}_{n}=\mu+O_{p}\left(\frac{1}{\sqrt{n}}\right)$ as $n \rightarrow \infty$ where \bar{X}_{n} is the sample mean of n independent and identically distributed random variables with mean μ and finite variance σ^{2}. Note that the definition of O_{p} is as follows: $X_{n}=O_{p}\left(Y_{n}\right)$ if for every $\epsilon>0$, there exist M and N such that $P\left(\left|X_{n} / Y_{n}\right|<M\right)>1-\epsilon$ for all $n>N$ where $\left\{Y_{n}\right\}_{n \geq 1}$ is a sequence of real-valued random variables with distribution function $G_{n}(y)$ for each n.
2. Suppose Y_{1}, Y_{2}, \ldots, is a simple random sample from an exponential distribution with density $g(y)=\theta \exp (-\theta y)$ where $\theta>0$ and $y>0$. Consider the estimator of $h(\theta)=1 / \theta, \hat{h}_{n}=$ $\sum_{i=1}^{n} Y_{i} /(n+2)$.
(a) (4 points) Compute the bias of \hat{h}_{n}, denoted as $B\left(\hat{h}_{n}\right)$.
(b) (4 points) Compute the variance of \hat{h}_{n}, denoted as $\operatorname{Var}\left(\hat{h}_{n}\right)$.
(c) (4 points) Show that $B\left(\hat{h}_{n}\right) \sim k_{1} \operatorname{Var}\left(\hat{h}_{n}\right) \sim k_{2}(1 / n)$ as $n \rightarrow \infty$ for some constants k_{1} and k_{2} depending on θ. Note that the definition of \sim is as follows: the sequence of real numbers $\left\{c_{n}\right\}_{n \geq 1}$ is asymptotically equivalent to the sequence $\left\{d_{n}\right\}_{n \geq 1}$, written as $c_{n} \sim d_{n}$ if $\left(c_{n} / d_{n}\right) \rightarrow 1$ as $n \rightarrow \infty$.
3. Suppose X_{1}, X_{2}, \ldots, are independent and identically distributed with mean μ and variance σ^{2}. Let $Y_{i}=\bar{X}_{i}=\left(\sum_{j=1}^{i} X_{j}\right) / i$.
(a) (3 points) Are Y_{1}, Y_{2}, \ldots independent? Verify your answer.
(b) (7 points) Show that $\bar{Y}_{n}=\left(\sum_{i=1}^{n} Y_{i}\right) / n$ is a consistent estimator of μ.
[Hint] Use $\operatorname{Var}\left(\bar{Y}_{n}\right)=\frac{\sigma^{2}}{n^{2}}\left(2 n-\sum_{i=1}^{n} \frac{1}{i}\right)$.
(c) (8 points) Compute the limit of the relative efficiency of \bar{Y}_{n} to $\bar{X}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$, defined to be $\frac{\operatorname{Var}\left(\bar{X}_{n}\right)}{\operatorname{Var}\left(Y_{n}\right)}$ as $n \rightarrow \infty$.
4. Answer the following questions.
(a) (10 points) Suppose that X is a random variable with $E(X)=0$ and $\operatorname{Var}(X)=\sigma^{2}<\infty$. Let Z_{n} denote the random variable $X^{2} I\{|X| \geq \sigma \sqrt{n}\}$. Prove that $E\left(Z_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$.
(b) (15 points) Suppose that X_{1}, X_{2}, \ldots, are independent and identically distributed with $E\left(X_{i}\right)=\mu$ and $\operatorname{Var}\left(X_{i}\right)=\sigma^{2}<\infty$. Let $k_{n 1}, \ldots, k_{n n}$ be constants satisfying

$$
\frac{\max _{i \leq n} k_{n i}^{2}}{\sum_{j=1}^{n} k_{n j}^{2}} \rightarrow 0 \text { as } n \rightarrow \infty
$$

Let $T_{n}=\sum_{i=1}^{n} k_{n i} X_{i}$. Prove that

$$
\frac{T_{n}-E\left(T_{n}\right)}{\sqrt{\operatorname{Var}\left(T_{n}\right)}} \xrightarrow{d} N(0,1)
$$

[Hint] Use Lindeberg-Feller Central Limit Theorem by checking the Lindeberg condition.
5. Suppose that X_{1}, \ldots, X_{n} are independent and identically distributed with the unknown distribution function $P\left(X_{i} \leq x\right)=F(x-\mu)$ for the mean parameter μ and the variance parameter σ^{2} where $f(x)=F^{\prime}(x)$ exists and is symmetric about 0 . Note that σ^{2} is not a function of μ. We want to test $H_{0}: \mu=0$ vs. $H_{1}: \mu>0$. Consider the statistic $\bar{X}_{n}=\sum_{i=1}^{n} X_{i} / n$.
(a) (3 points) Prove that under $H_{0}: \mu=0$,

$$
\sqrt{n} \bar{X}_{n} / \sigma \xrightarrow{d} Z,
$$

where Z is the standard normal distribution with mean 0 and variance 1 .
(b) (3 points) Assume that one rejects $H_{0}: \mu=0$ whenever

$$
\bar{X}_{n}>u_{\alpha} \sigma / \sqrt{n},
$$

where u_{α} is the $1-\alpha$ quantile of the standard normal distribution. Show that this test has asymptotic level α using (a).
(c) (10 points) Show that the following asymptotic result holds for the alternatives $\left\{\mu_{n}\right\}$ satisfying $\mu_{n}>0$ for all n :

$$
\sqrt{n} \frac{\left(\bar{X}_{n}-\mu_{n}\right)}{\sigma} \xrightarrow{d} Z,
$$

where μ_{n} means that the mean parameter depends on n.
(d) (6 points) Suppose that $\mu_{n}>0$ for all n and $\sqrt{n} \mu_{n} \rightarrow \delta>0$. Let $\operatorname{Power}_{n}\left(\mu_{n}\right)$ be the power of this test against the alternative μ_{n}. Show that

$$
\operatorname{Power}_{n}\left(\mu_{n}\right) \rightarrow \Phi\left(\frac{\delta}{\sigma}-u_{\alpha}\right) \text { as } n \rightarrow \infty
$$

where $\Phi(x)$ denotes the cumulative distribution function of the standard normal distribution.

