UNIVERSITY OF MASSACHUSETTS DEPARTMENT OF MATHEMATICS AND STATISTICS ADVANCED EXAM - STATISTICS (II) 10:00 AM - 1:00 PM, August 27, 2021

Work all problems and show all work. Explain your answers. State the theorems used whenever possible. 70 points are required to pass.

- 1. Let $\{X_n\}_{n\geq 1}$ be a sequence of real-valued random variables with distribution function $F_n(x)$ for each n and X be another real-valued random variable with distribution function F(x).
 - (a) (3 points) State the definition of almost sure convergence (denoted as $X_n \xrightarrow{a.s.} X$).
 - (b) (3 points) State the definition of convergence in ath mean (denoted as $X_n \stackrel{a}{\to} X$).
 - (c) (3 points) State the definition of convergence in probability (denoted as $X_n \xrightarrow{P} X$).
 - (d) (3 points) State the definition of convergence in distribution (denoted as $X_n \xrightarrow{d} X$).
 - (e) (5 points) Prove that for fixed a > 0, $X_n \xrightarrow{a} X$ implies $X_n \xrightarrow{P} X$.
 - (f) (6 points) Show that $\bar{X}_n = \mu + O_p\left(\frac{1}{\sqrt{n}}\right)$ as $n \to \infty$ where \bar{X}_n is the sample mean of n independent and identically distributed random variables with mean μ and finite variance σ^2 . Note that the definition of O_p is as follows: $X_n = O_p(Y_n)$ if for every $\epsilon > 0$, there exist M and N such that $P(|X_n/Y_n| < M) > 1 \epsilon$ for all n > N where $\{Y_n\}_{n \ge 1}$ is a sequence of real-valued random variables with distribution function $G_n(y)$ for each n.
- 2. Suppose Y_1, Y_2, \ldots , is a simple random sample from an exponential distribution with density $g(y) = \theta \exp(-\theta y)$ where $\theta > 0$ and y > 0. Consider the estimator of $h(\theta) = 1/\theta$, $\hat{h}_n = \sum_{i=1}^n Y_i/(n+2)$.
 - (a) (4 points) Compute the bias of \hat{h}_n , denoted as $B(\hat{h}_n)$.
 - (b) (4 points) Compute the variance of \hat{h}_n , denoted as $Var(\hat{h}_n)$.
 - (c) (4 points) Show that $B(\hat{h}_n) \sim k_1 Var(\hat{h}_n) \sim k_2 (1/n)$ as $n \to \infty$ for some constants k_1 and k_2 depending on θ . Note that the definition of \sim is as follows: the sequence of real numbers $\{c_n\}_{n\geq 1}$ is asymptotically equivalent to the sequence $\{d_n\}_{n\geq 1}$, written as $c_n \sim d_n$ if $(c_n/d_n) \to 1$ as $n \to \infty$.
- 3. Suppose X_1, X_2, \ldots , are independent and identically distributed with mean μ and variance σ^2 . Let $Y_i = \bar{X}_i = (\sum_{j=1}^i X_j)/i$.
 - (a) (3 points) Are Y_1, Y_2, \ldots independent? Verify your answer.
 - (b) (7 points) Show that $\bar{Y}_n = (\sum_{i=1}^n Y_i)/n$ is a consistent estimator of μ . [Hint] Use $Var(\bar{Y}_n) = \frac{\sigma^2}{n^2} \left(2n - \sum_{i=1}^n \frac{1}{i}\right)$.

- (c) (8 points) Compute the limit of the relative efficiency of \bar{Y}_n to $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$, defined to be $\frac{Var(\bar{X}_n)}{Var(\bar{Y}_n)}$ as $n \to \infty$.
- 4. Answer the following questions.
 - (a) (10 points) Suppose that X is a random variable with E(X) = 0 and $Var(X) = \sigma^2 < \infty$. Let Z_n denote the random variable $X^2I\{|X| \ge \sigma\sqrt{n}\}$. Prove that $E(Z_n) \to 0$ as $n \to \infty$.
 - (b) (15 points) Suppose that X_1, X_2, \ldots , are independent and identically distributed with $E(X_i) = \mu$ and $Var(X_i) = \sigma^2 < \infty$. Let k_{n1}, \ldots, k_{nn} be constants satisfying

$$\frac{\max_{i \le n} k_{ni}^2}{\sum_{j=1}^n k_{nj}^2} \to 0 \text{ as } n \to \infty.$$

Let $T_n = \sum_{i=1}^n k_{ni} X_i$. Prove that

$$\frac{T_n - E(T_n)}{\sqrt{Var(T_n)}} \xrightarrow{d} N(0,1).$$

[Hint] Use Lindeberg-Feller Central Limit Theorem by checking the Lindeberg condition.

- 5. Suppose that X_1, \ldots, X_n are independent and identically distributed with the unknown distribution function $P(X_i \leq x) = F(x \mu)$ for the mean parameter μ and the variance parameter σ^2 where f(x) = F'(x) exists and is symmetric about 0. Note that σ^2 is not a function of μ . We want to test $H_0: \mu = 0$ vs. $H_1: \mu > 0$. Consider the statistic $\bar{X}_n = \sum_{i=1}^n X_i/n$.
 - (a) (3 points) Prove that under $H_0: \mu = 0$,

$$\sqrt{n}\bar{X}_n/\sigma \xrightarrow{d} Z$$

where Z is the standard normal distribution with mean 0 and variance 1.

(b) (3 points) Assume that one rejects $H_0: \mu = 0$ whenever

$$\bar{X}_n > u_0 \sigma / \sqrt{n}$$

where u_{α} is the $1-\alpha$ quantile of the standard normal distribution. Show that this test has asymptotic level α using (a).

(c) (10 points) Show that the following asymptotic result holds for the alternatives $\{\mu_n\}$ satisfying $\mu_n > 0$ for all n:

$$\sqrt{n} \frac{(\bar{X}_n - \mu_n)}{\sigma} \xrightarrow{d} Z,$$

where μ_n means that the mean parameter depends on n.

(d) (6 points) Suppose that $\mu_n > 0$ for all n and $\sqrt{n}\mu_n \to \delta > 0$. Let $Power_n(\mu_n)$ be the power of this test against the alternative μ_n . Show that

$$Power_n(\mu_n) \to \Phi\left(\frac{\delta}{\sigma} - u_\alpha\right) \text{ as } n \to \infty$$

where $\Phi(x)$ denotes the cumulative distribution function of the standard normal distribution.