Analysis Qualifying Examination

Department of Mathematics and Statistics
University of Massachusetts

Friday, August 21st, 2020

This exam consists of eight equally weighted problems (ten points each): a passing grade is 65% ($52 / 80$), including at least five "essentially correct" problems ($\approx 7.5 / 10$).

Clearly show your work, explicitly stating or naming results that you use; justify use of named theorems by verifying necessary conditions.

Please work legibly and clearly label each page/file of your exam with your name.

1. Let $\left\{q_{n} \mid n \geq 1\right\}$ be a countable dense set in $[0,1]$, and let $\left(a_{n}\right)$ be a sequence of positive numbers satisfying $\sum_{n} a_{n}=a<\infty$. Consider the series

$$
b(x)=\sum_{n} \frac{a_{n}^{2}}{\left|x-q_{n}\right|} .
$$

(a) Show that $b(x)$ is unbounded on any open subinterval of $[0,1]$.
(b) For any $\beta>0$, set

$$
E_{\beta}=\left\{x \in[0,1]| | x-q_{n} \mid \geq \beta a_{n} \text { for all } n \geq 1\right\},
$$

and show that $b(x)$ converges for all $x \in E_{\beta}$.
(c) Show that for appropriate β, E_{β} is non-empty, and in fact is uncountable. [Hint: Consider $m\left(E_{\beta}^{c}\right)$.]
2. Construct a bounded, monotone increasing function on \mathbb{R} whose set of discontinuities is precisely \mathbb{Q}. Can you make the function strictly increasing?
3. (a) Give definitions of each the following types of convergence:

- convergence in measure.
- uniform convergence;
- L^{1} convergence;
- almost everywhere convergence;
(b) Indicate without proof which types of convergence imply the others in the form $\mathcal{A} \Longrightarrow \mathcal{B} \Longrightarrow \mathcal{C} \Longrightarrow \mathcal{D}$.
(c) Provide examples of sequences which show that none of these notions of convergence are equivalent. That is, find a sequence that converges \mathcal{C} but not \mathcal{B}, etc.

4. Let $\left\{e_{n}\right\}_{n=1}^{\infty}$ be an orthonormal basis for $X:=L^{2}([0,1])$, and for any $f \in X$ define $\widehat{f}(n):=\left\langle f, e_{n}\right\rangle$. Parts (a) and (b) of this problem are unrelated.
(a) For any $f \in X$ and $p \in[1, \infty)$, define

$$
\|\widehat{f}\|_{p}=\left(\sum_{n=1}^{\infty}|\widehat{f}(n)|^{p}\right)^{1 / p}
$$

whenever the sum is finite, and $\|\widehat{f}\|_{\infty}=\sup _{n \geq 1}|\widehat{f}(n)|$. Show that if $\|\widehat{f}\|_{p}$ is finite, then so is $\|\hat{f}\|_{q}$ for $q \in[p, \infty]$, and $\|\widehat{f}\|_{q} \leq\|\widehat{f}\|_{p}$.
(b) Assume $\left|e_{n}(x)\right| \leq M$ for all n and $x \in[0,1]$, and for $f \in X$ and $\alpha>0$ define

$$
\left\|\left||f| \|_{(\alpha)}:=\left(\sum_{n=1}^{\infty} n^{2 \alpha}|\widehat{f}(n)|^{2}\right)^{1 / 2}\right.\right.
$$

whenever this sum is convergent. Show that if $\left\|\|f\|_{(\alpha)}\right.$ is finite for some $\alpha>\frac{1}{2}$ then $f \in L^{\infty}([0,1])$ with $\|f\|_{L^{\infty}([0,1])} \leq C\left|\|f \mid\| \|_{(\alpha)}\right.$ for some constant C which is independent of f.
[Hints: For (a), first prove it for $q=\infty$; for (b), write f in terms of $\left\{e_{n}\right\}$ and use Cauchy-Schwarz.]
5. Let H be a Hilbert space with norm $\|\cdot\|$ and inner product $\langle\cdot, \cdot\rangle$, and let $A=\left\{x_{n}\right\}_{n=1}^{\infty}$ be an orthonormal set in X.
(a) Give an example of a Hilbert space H and an infinite orthonormal set A such that A is not a basis for H.
(b) Prove that if $\|x\|^{2}=\sum_{n=1}^{\infty}\left|\left\langle x, x_{n}\right\rangle\right|^{2}$ for all $x \in H$, then A is a basis for H.
(c) Strengthen the previous part by showing that A is a basis for H provided $\|x\|^{2}=\sum_{n=1}^{\infty}\left|\left\langle x, x_{n}\right\rangle\right|^{2}$ holds for all x in a dense subset of H.
6. The two parts of this problem are unrelated.
(a) Let $X=(0, \infty)$, let $p \geq 1$ be given, and define

$$
T(f)(x):=\frac{1}{x^{1 / p}} \int_{0}^{x} f(y) d y
$$

Prove that if $\frac{1}{p}+\frac{1}{q}=1$, then T is a bounded linear map from $L^{q}(X)$ to $B C(X)$. Here $B C(X)$ denotes the space of bounded continuous functions on X with the uniform norm $\|g\|_{u}=\sup _{x \in X}\{|g(x)|\}$.
(b) Compute the limit

$$
\lim _{n \rightarrow \infty} \int_{0}^{\infty} \frac{n^{2}\left(1-e^{-x^{2} / n^{2}}\right)}{x^{2}\left(1+x^{2}\right)} d x
$$

with justification where necessary.
7. For any $f \in L^{1}\left(\mathbb{R}^{d}\right)$ define the maximal function f^{*} by

$$
f^{*}(x)=\sup _{x \in B} \frac{1}{|B|} \int_{B}|f(y)| d y,
$$

where the supremum is taken over balls containing x.
(a) Show that if f is not identically zero, then f^{*} is not integrable. [Hint: Show $\left|f^{*}(x)\right| \geq C|x|^{-d}$ for large $|x|$, by finding a ball with $\int_{B}|f|>0$.]
(b) Now suppose f is supported in the unit ball with $\|f\|_{L^{1}}=1$. Show that there is a constant $c>0$ such that

$$
m\left(\left\{x: f^{*}(x)>\alpha\right\}\right) \geq c \alpha^{-1}
$$

for all sufficiently small α, where m denotes Lebesgue measure.
8. (a) Show that a linear functional on a normed vector space X is bounded if and only if its kernel is closed.
(b) Prove that given a linear subspace Z of a normed vector space X and $y \in X$ with $d(y, Z)=\delta$ (d the distance function), there exists $\phi \in X^{*}$ satisfying

$$
\|\phi\| \leq 1, \quad \phi(y)=\delta, \quad \text { and } \quad \phi(z)=0 \quad \text { for all } \quad z \in Z .
$$

If you use a well-known theorem, be sure to clearly identify it.

