Analysis Qualifying Examination

Department of Mathematics and Statistics University of Massachusetts

Friday, August 21st, 2020

This exam consists of eight equally weighted problems (ten points each): a passing grade is 65% (52/80), including at least five "essentially correct" problems ($\approx 7.5/10$).

Clearly show your work, explicitly stating or naming results that you use; justify use of named theorems by verifying necessary conditions.

Please work legibly and clearly label each page/file of your exam with your name.

1. Let $\{q_n \mid n \geq 1\}$ be a countable dense set in [0,1], and let (a_n) be a sequence of positive numbers satisfying $\sum_n a_n = a < \infty$. Consider the series

$$b(x) = \sum_{n} \frac{a_n^2}{|x - q_n|}.$$

- (a) Show that b(x) is unbounded on any open subinterval of [0,1].
- (b) For any $\beta > 0$, set

$$E_{\beta} = \{ x \in [0, 1] \mid |x - q_n| \ge \beta \, a_n \text{ for all } n \ge 1 \},$$

and show that b(x) converges for all $x \in E_{\beta}$.

- (c) Show that for appropriate β , E_{β} is non-empty, and in fact is uncountable. [Hint: Consider $m(E_{\beta}^{c})$.]
- 2. Construct a bounded, monotone increasing function on \mathbb{R} whose set of discontinuities is precisely \mathbb{Q} . Can you make the function strictly increasing?
- 3. (a) Give definitions of each the following types of convergence:

- convergence in measure.
- uniform convergence;
- L^1 convergence;
- almost everywhere convergence;
- (b) Indicate without proof which types of convergence imply the others in the form $\mathcal{A} \implies \mathcal{B} \implies \mathcal{C} \implies \mathcal{D}$.
- (c) Provide examples of sequences which show that none of these notions of convergence are equivalent. That is, find a sequence that converges \mathcal{C} but not \mathcal{B} , etc.
- 4. Let $\{e_n\}_{n=1}^{\infty}$ be an orthonormal basis for $X := L^2([0,1])$, and for any $f \in X$ define $\widehat{f}(n) := \langle f, e_n \rangle$. Parts (a) and (b) of this problem are unrelated.
 - (a) For any $f \in X$ and $p \in [1, \infty)$, define

$$\|\widehat{f}\|_p = \left(\sum_{n=1}^{\infty} |\widehat{f}(n)|^p\right)^{1/p},$$

whenever the sum is finite, and $\|\widehat{f}\|_{\infty} = \sup_{n \geq 1} |\widehat{f}(n)|$. Show that if $\|\widehat{f}\|_p$ is finite, then so is $\|\widehat{f}\|_q$ for $q \in [p, \infty]$, and $\|\widehat{f}\|_q \leq \|\widehat{f}\|_p$.

(b) Assume $|e_n(x)| \leq M$ for all n and $x \in [0,1]$, and for $f \in X$ and $\alpha > 0$ define

$$|||f|||_{(\alpha)} := \left(\sum_{n=1}^{\infty} n^{2\alpha} |\hat{f}(n)|^2\right)^{1/2}$$

whenever this sum is convergent. Show that if $|||f|||_{(\alpha)}$ is finite for some $\alpha > \frac{1}{2}$ then $f \in L^{\infty}([0,1])$ with $||f||_{L^{\infty}([0,1])} \leq C|||f|||_{(\alpha)}$ for some constant C which is independent of f.

[Hints: For (a), first prove it for $q = \infty$; for (b), write f in terms of $\{e_n\}$ and use Cauchy-Schwarz.]

5. Let H be a Hilbert space with norm $\|\cdot\|$ and inner product $\langle\cdot,\cdot\rangle$, and let $A = \{x_n\}_{n=1}^{\infty}$ be an orthonormal set in X.

- (a) Give an example of a Hilbert space H and an *infinite* orthonormal set A such that A is not a basis for H.
- (b) Prove that if $||x||^2 = \sum_{n=1}^{\infty} |\langle x, x_n \rangle|^2$ for all $x \in H$, then A is a basis for H.
- (c) Strengthen the previous part by showing that A is a basis for H provided $||x||^2 = \sum_{n=1}^{\infty} |\langle x, x_n \rangle|^2$ holds for all x in a dense subset of H.
- 6. The two parts of this problem are unrelated.
 - (a) Let $X = (0, \infty)$, let $p \ge 1$ be given, and define

$$T(f)(x) := \frac{1}{x^{1/p}} \int_0^x f(y) \ dy.$$

Prove that if $\frac{1}{p} + \frac{1}{q} = 1$, then T is a bounded linear map from $L^q(X)$ to BC(X). Here BC(X) denotes the space of bounded continuous functions on X with the uniform norm $\|g\|_u = \sup_{x \in X} \{|g(x)|\}$.

(b) Compute the limit

$$\lim_{n \to \infty} \int_0^\infty \frac{n^2 (1 - e^{-x^2/n^2})}{x^2 (1 + x^2)} \ dx,$$

with justification where necessary.

7. For any $f \in L^1(\mathbb{R}^d)$ define the maximal function f^* by

$$f^*(x) = \sup_{x \in B} \frac{1}{|B|} \int_B |f(y)| dy,$$

where the supremum is taken over balls containing x.

- (a) Show that if f is not identically zero, then f^* is not integrable. [Hint: Show $|f^*(x)| \ge C|x|^{-d}$ for large |x|, by finding a ball with $\int_B |f| > 0$.]
- (b) Now suppose f is supported in the unit ball with $||f||_{L^1} = 1$. Show that there is a constant c > 0 such that

$$m(\lbrace x : f^*(x) > \alpha \rbrace) \ge c \alpha^{-1}$$

for all sufficiently small α , where m denotes Lebesgue measure.

- 8. (a) Show that a linear functional on a normed vector space X is bounded if and only if its kernel is closed.
 - (b) Prove that given a linear subspace Z of a normed vector space X and $y \in X$ with $d(y, Z) = \delta$ (d the distance function), there exists $\phi \in X^*$ satisfying

$$\|\phi\| \le 1$$
, $\phi(y) = \delta$, and $\phi(z) = 0$ for all $z \in Z$.

If you use a well-known theorem, be sure to clearly identify it.