DEPARTMENT OF MATHEMATICS AND STATISTICS UNIVERSITY OF MASSACHUSETTS AMHERST APPLIED MATHEMATICS EXAM JANUARY 2020

Do all six problems. All problems carry equal weight.

Passing level: 65% with at least three substantially correct.

1. Let

$$x' = y$$

 $y' = -x + y - y(x^2 + 2y^2)$

Prove that there exists a nontrivial periodic solution.

- 2. Give one example of ODE $x' = f(t, x), x(0) = x_0$ with a continuous vector field f(t, x) that admits more than one solution.
- 3. Suppose we have a physical law relating the pressure (Force/Area) P, length l, mass m, time t, and density ρ of a system of the form $f(P, l, m, t, \rho) = 0$. Using dimensional analysis, show there is an equivalent physical law of two dimensionless parameters.
- 4. Consider initial value problem

$$u'' + u + \epsilon u^3 = 0$$

 $u(0) = 0, \quad u'(0) = 1$

for $\epsilon \ll 1$. The regular perturbation expands u(t) as

$$u(t) = u_0(t) + \epsilon u_1(t) + \epsilon^2 u_2(t) + \cdots$$

Find $u_0(t)$ and $u_1(t)$. Is the approximation $u_0(t) + \epsilon u_1(t)$ a good approximation of u(t) for all $t \in \mathbb{R}$? Why? (Hint: $\sin^3 t = \frac{3}{4} \sin t - \frac{1}{4} \sin(3t)$)

- 5. Let X_n be a simple symmetric random walk on \mathbb{Z} with $X_0 = 0$. Let $w(m, N) = \mathbb{P}[X_N = m]$.
 - (a) Calculate w(m, N).
 - (b) Let

$$\hat{w}(x,t) = w(\frac{x}{\Delta x}, \frac{t}{\Delta t}).$$

Show that

$$\hat{w}(x, t + \Delta t) = \frac{1}{2} (\hat{w}(x - \Delta x, t) + \hat{w}(x + \Delta x, t)).$$

(c) Fix t, let $N \to \infty$. Assume \hat{w} is twice differentiable and let $u = \hat{w}/(2\Delta x)$. Find the relation between Δx and Δt such that u(x,t) is approximated by

$$u_t = 5u_{xx}$$
.

as $N \to \infty$.

6. Consider the dynamical system

$$\frac{dx}{dt} = (x^2 - x - r)(r - x + x^3)$$

where $r \in \mathbb{R}$ is a parameter.

- (a) Find and plot the equilibrium solution(s) against the parameter r (use solid lines for stable curves and dashed lines for unstable curves).
- (b) Find and classify the bifurcation points.