DEPARTMENT OF MATHEMATICS AND STATISTICS UNIVERSITY OF MASSACHUSETTS AMHERST
 APPLIED MATHEMATICS EXAM
 JANUARY 2020

Do all six problems. All problems carry equal weight.
Passing level: 65% with at least three substantially correct.

1. Let

$$
\begin{aligned}
x^{\prime} & =y \\
y^{\prime} & =-x+y-y\left(x^{2}+2 y^{2}\right)
\end{aligned}
$$

Prove that there exists a nontrivial periodic solution.
2. Give one example of ODE $x^{\prime}=f(t, x), x(0)=x_{0}$ with a continuous vector field $f(t, x)$ that admits more than one solution.
3. Suppose we have a physical law relating the pressure (Force/Area) P, length l, mass m, time t, and density ρ of a system of the form $f(P, l, m, t, \rho)=0$. Using dimensional analysis, show there is an equivalent physical law of two dimensionless parameters.
4. Consider initial value problem

$$
\begin{aligned}
& u^{\prime \prime}+u+\epsilon u^{3}=0 \\
& u(0)=0, \quad u^{\prime}(0)=1
\end{aligned}
$$

for $\epsilon \ll 1$. The regular perturbation expands $u(t)$ as

$$
u(t)=u_{0}(t)+\epsilon u_{1}(t)+\epsilon^{2} u_{2}(t)+\cdots .
$$

Find $u_{0}(t)$ and $u_{1}(t)$. Is the approximation $u_{0}(t)+\epsilon u_{1}(t)$ a good approximation of $u(t)$ for all $t \in \mathbb{R}$? Why? (Hint: $\left.\sin ^{3} t=\frac{3}{4} \sin t-\frac{1}{4} \sin (3 t)\right)$
5. Let X_{n} be a simple symmetric random walk on \mathbb{Z} with $X_{0}=0$. Let $w(m, N)=\mathbb{P}\left[X_{N}=m\right]$.
(a) Calculate $w(m, N)$.
(b) Let

$$
\hat{w}(x, t)=w\left(\frac{x}{\Delta x}, \frac{t}{\Delta t}\right) .
$$

Show that

$$
\hat{w}(x, t+\Delta t)=\frac{1}{2}(\hat{w}(x-\Delta x, t)+\hat{w}(x+\Delta x, t)) .
$$

(c) Fix t, let $N \rightarrow \infty$. Assume \hat{w} is twice differentiable and let $u=\hat{w} /(2 \Delta x)$. Find the relation between Δx and Δt such that $u(x, t)$ is approximated by

$$
u_{t}=5 u_{x x} .
$$

as $N \rightarrow \infty$.
6. Consider the dynamical system

$$
\frac{d x}{d t}=\left(x^{2}-x-r\right)\left(r-x+x^{3}\right)
$$

where $r \in \mathbb{R}$ is a parameter.
(a) Find and plot the equilibrium solution(s) against the parameter r (use solid lines for stable curves and dashed lines for unstable curves).
(b) Find and classify the bifurcation points.

