Advanced Calculus/Linear algebra basic exam

Department of Mathematics and Statistics
University of Massachusetts Amherst
January 16, 2020

Instructions: Do 7 of the 8 problems. Show your work. The passing standards are:

- Master's level: 60% with three questions essentially, complete (including one question from each part);
- Ph.D. level: 75% with two questions from each part essentially complete.

Advanced Calculus

1. Answer each of the following and explain your work.
(a) Find $\lim _{x \rightarrow \infty} x^{e^{-x}}$.
(b) Find $F(x)=\int \tan x \ln (\cos x) d x$.
(c) Determine if $\sum_{n=1}^{\infty} \frac{n!}{n^{n}}$ converges.
2. The plane $x+y+2 z=2$ intersects the paraboloid $z=x^{2}+y^{2}$ in an ellipse. Find the points on this ellipse that are closest and furthest from the origin using Lagrange multipliers.
3. (a) Find the volume of the solid of the region R that lies between the paraboloid $z=24-x^{2}-y^{2}$ and the cone $z=2 \sqrt{x^{2}+y^{2}}$.
(b) Find the center of mass of R assuming the density is constant.
4. Evaluate $\int_{C} 2 y d x+x z d y+(x+y) d z$ where C is the curve of intersection of the plane $z=y+2$ and the cylinder $x^{2}+y^{2}=1$.

Linear Algebra

1. (a) Let $\mathbf{a}_{\mathbf{1}}=\left(\begin{array}{c}1 \\ 1 \\ -1\end{array}\right), \mathbf{a}_{\mathbf{2}}=\left(\begin{array}{l}0 \\ 2 \\ 3\end{array}\right), \mathbf{a}_{\mathbf{3}}=\left(\begin{array}{c}z \\ -3 \\ -7\end{array}\right)$. Find all values of z for which there will be a unique solution to $\mathbf{a}_{1} x_{1}+\mathbf{a}_{\mathbf{2}} x_{2}+\mathbf{a}_{\mathbf{3}} x_{3}=\mathbf{b}$ for every vector \mathbf{b} in \mathbb{R}^{3}. Explain your answer.
(b) Let $\mathbf{a}_{1}, \mathbf{a}_{\mathbf{2}}$, and $\mathbf{a}_{\mathbf{3}}$ be as in (a), and let $\mathbf{a}_{\mathbf{4}}=\left(\begin{array}{c}1 \\ 4 \\ -5\end{array}\right)$. Find all values of z for which there will be a unique solution to $\mathbf{a}_{1} y_{1}+\mathbf{a}_{\mathbf{2}} y_{2}+\mathbf{a}_{\mathbf{3}} y_{3}+\mathbf{a}_{\mathbf{4}} y_{4}=\mathbf{c}$ for every vector \mathbf{c} in \mathbb{R}^{3}. Explain your answer.
(c) Using Gauss-Jordan elimination, find the general solution to the system of linear equations

$$
\begin{aligned}
& x_{1}-2 x_{2}+x_{3}=1 \\
& x_{1}-2 x_{2}- \\
& 2 x_{3}=1 \\
& 2 x_{1}-5 x_{2}+2 x_{3}=1
\end{aligned}
$$

(d) Using part (c), find a linear equation for the plane going through points $\left(\begin{array}{c}1 \\ -2 \\ 1\end{array}\right),\left(\begin{array}{c}1 \\ -2 \\ -1\end{array}\right),\left(\begin{array}{c}2 \\ -5 \\ 2\end{array}\right)$.
2. (a) Find an orthogonal basis for the subspace S spanned by the vectors $\left(\begin{array}{c}-2 \\ -1 \\ 1 \\ 2\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{l}4 \\ 1 \\ 1 \\ 4\end{array}\right)$ that contains $\left(\begin{array}{c}-2 \\ -1 \\ 1 \\ 2\end{array}\right)$.
(b) Project the vector $\left(\begin{array}{l}4 \\ 1 \\ 1 \\ 3\end{array}\right)$ onto S and find the linear combination $-\ldots\left(\begin{array}{c}-2 \\ -1 \\ 1 \\ 2\end{array}\right)+\ldots\left(\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right)+\ldots\left(\begin{array}{l}4 \\ 1 \\ 1 \\ 4\end{array}\right)$ that gives that vector.
(c) Your answer to (b), say (a_{1}, a_{2}, a_{3}), yields the least squares solution for the parabola $y=a_{3} x^{2}+$ $a_{1} x+a_{2}$ going through the points $(-2,4),(-1,1),(1,1),(2,3)$. Explain why.
3. (a) Is $\left[\begin{array}{ccc}1 & -1 & 0 \\ -1 & 1 & 0 \\ 3 & 4 & 1\end{array}\right]$ diagonalizable? If so, find its diagonalization. If not, explain why.
(b) Is $\left[\begin{array}{cccc}-2 & 3 & 1 & 5 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 3 & 4 \\ 0 & 0 & 0 & 1\end{array}\right]$ diagonalizable? If so, find its diagonalization. If not, explain why.
(c) One of the last two matrices was diagonalizable; call it A. Find A^{7}.
4. (a) Let $T_{1}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ such that $T_{1}(v)=A v$ and $T_{2}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}$. Prove that if T_{1} is not injective, then neither is $T_{2} \circ T_{1}$ and that, if T_{2} is not surjective, then neither is $T_{2} \circ T_{1}$.
(b) Let $T_{1}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ and let $T_{2}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ such that $T_{1}(\mathbf{v})=A \mathbf{v}$ and $T_{2}(\mathbf{w})=A^{\top} \mathbf{w}$ for every $\mathbf{v} \in \mathbb{R}^{m}$ and $\mathbf{w} \in \mathbb{R}^{n}$. Prove that T_{1} is surjective if and only if T_{2} is injective.
(c) Let A be an $n \times n$ matrix. Show that if $\operatorname{rank}(A B)=\operatorname{rank}(B)$ for all $n \times n$ matrices B, then A is invertible.

