Advanced Calculus/Linear algebra basic exam

Department of Mathematics and Statistics University of Massachusetts Amherst September 12, 2019

Instructions: Do 7 of the 8 problems. Show your work. The passing standards are:

- Master's level: 60% with three questions essentially, complete (including one question from each part);
- Ph.D. level: 75% with two questions from each part essentially complete.

Advanced Calculus

- 1. Compute the following integrals and limits.
 - (a) Find the derivative of the function $f(x) = \tan\left(\sqrt{\frac{1-x}{1+x}}\right)$.
 - (b) Evaluate $\int x^2 \sin(x^3) dx$.

(c) Switch the order of integration of $\int_0^{2\pi} \int_0^1 \int_{-1}^{-2r+1} (r^2 \cos^2 \theta + z^2) r^2 dz dr d\theta$ to $dr d\theta dz$. Do not evaluate.

- (d) The triple integral in (c) calculates a moment of inertia of a solid.
 - 1. What is that solid?
 - 2. Around what axis does the solid revolve?
 - 3. What is the density of the solid?
- 2. Find the radius of converge of each of the following power series:

(a)
$$\sum_{n=0}^{\infty} \frac{n^3}{3^n} z^n,$$

(b)
$$\sum_{n=0}^{\infty} \frac{2^n}{n!} z^n.$$

- 3. Among all the planes that are tangent to the surface $xy^2z^2 = 1$, find the one(s) that are farthest away from the origin.
- 4. Compute the flux of $\mathbf{F} = \langle x + y, y, z \rangle$ across the part of the cone $y = \sqrt{4x^2 + 4z^2}$ that lies between the planes y = 0 and y = 4, oriented in the direction of the negative y-axis, in two ways:
 - (a) directly,
 - (b) by using the divergence theorem.

Turn the page

Linear Algebra

- 5. Consider the matrix $A = \begin{pmatrix} 1 & 2 & -1 \\ 2 & 2 & c \\ 3 & 5 & -2 \end{pmatrix}$ and $\mathbf{b} = \begin{pmatrix} -1 \\ 2 \\ -1 \end{pmatrix}$.
 - (a) Characterize the values c such that the matrix has a nontrivial nullspace (kernel).
 - (b) For c = 1, find all solutions **x** to the system A**x** = **b**.
 - (c) For c = 0, find all solutions **x** to the system A**x** = **b**.
- 6. Consider the linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ that reflects about the line y = x.

- (a) What is the image T(1,0) and T(0,1).
- (b) Find the 2×2 matrix A representation of T with respect to the basis $\{(1,0), (0,1)\}$.
- (c) Find the eigenvectors and the corresponding eigenvalues of T.
- (d) Diagonalize A.
- (e) Give an example of a 2×2 nonzero matrix B that has no eigenvectors and justify your answer.
- 7. (a) Find an orthogonal basis for the span of the following three vectors $S_2 = \{(1,0,1), (0,1,1), (1,3,3)\}$ and write (1,1,2) in terms of such a basis.
 - (b) Let W = span((1,1,1)). Find a basis of the orthogonal complement W^{\perp} in \mathbb{C}^3 .
- 8. Let V be a vector space and $T: V \to V$ be a linear transformation.
 - (a) Show that $\{x \mid T(x) = x\}$ is a subspace of V.
 - (b) Show that if $T^2 = T$, then for any $x \in V$ we have that x T(x) is in the nullspace (kernel) of T denoted by ker(T).
 - (c) Show that if $T^2 = T$ then $V = \{x \mid T(x) = x\} \oplus \ker(T)$.
 - (d) Characterize all linear transformations T such that $T^2 = T$.