NAME:

Advanced Analysis Qualifying Examination Department of Mathematics and Statistics University of Massachusetts

Wednesday, August 28th, 2019

Instructions

- 1. This exam consists of eight (8) problems all counted equally for a total of 100%.
- 2. You are encouraged to try to solve every problem; there is no penalty for incorrect answers.
- 3. In order to pass this exam, it is enough that you solve essentially correctly at least five (5) problems and that you have an overall score of at least 65%.
- 4. State explicitly all the results that you use in your proofs and <u>verify</u> that these results apply.
- 5. Show all your work and justify the steps in your proofs.
- 6. Please write your full work and answers <u>clearly</u> in the blank space under each question and on the blank page after each question.

Conventions

- 1. For a set A, χ_A denotes the indicator function or characteristic function of A.
- 2. If a measure is not specified, use Lebesgue measure on \mathbb{R}^d . This measure is denoted by m or $m_{\mathbb{R}^d}$.
- 3. If a σ -algebra on \mathbb{R}^d is not specified, use the Borel σ -algebra.

1. For $\alpha \in \mathbb{R}$, define the function $f_{\alpha}: \mathbb{R}^d \to \mathbb{R}$ by

$$f_{\alpha} = \sum_{n=1}^{\infty} n^{\alpha} \chi_{A_n}, \quad \text{where} \quad A_n = \Big\{ x \in \mathbb{R}^d : \frac{1}{n+1} < |x| \le \frac{1}{n} \Big\}.$$

Find the values of α for which f_{α} is integrable, and then prove that f_{α} is integrable for those values of α .

- 2. Let (X, \mathcal{M}, μ) be a measure space and (Y, \mathcal{N}) a measurable space. Let $h: X \to Y$ be a measurable function.
 - (a) Define a set function ν on $\mathcal N$ by $\nu(A)=\mu(h^{-1}(A))$ for every $A\in\mathcal N$. Prove that ν is a measure on $\mathcal N$.
 - (b) Prove that if $f \in L^1(\nu)$, then $f \circ h \in L^1(\mu)$ and that

$$\int_{Y} f \, d\nu \, = \, \int_{X} (f \circ h) \, d\mu.$$

(c) Consider (X,\mathcal{M},μ) and (Y,\mathcal{N}) as in line 1 of this problem and consider the measure ν defined in part (a). Assume that $\mu(X)<\infty$ and that γ is a finite measure on (Y,\mathcal{N}) satisfying $\nu\ll\gamma$. By using part (b) and quoting a well known theorem in measure theory, prove that there exists $g\in L^1(\gamma)$ such that

$$\int_X (f\circ h)\,d\mu \,=\, \int_Y f\,g\,d\gamma \ \text{ for each } f\in L^1(\nu).$$

- 3. (a) Define convergence in measure.
 - (b) Assume $m(E) < \infty$, and define

$$\rho(g,h) = \int_E \frac{|g-h|}{1+|g-h|},$$

for any measurable functions g and h defined on E. Show that a sequence f_n converges in measure to f if and only if

$$\lim_{n} \rho(f_n, f) = 0.$$

- 4. Consider the function $f(x,y) := e^{-xy} 2e^{-2xy}$ where $x \in (1,\infty)$ and $y \in (0,1)$.
 - (a) Prove that for a.e. $y \in (0,1)$ f^y (defined as $f^y(x) = f(x,y)$) is integrable on $(1,\infty)$ with respect to $m_{\mathbb{R}}$.
 - (b) Prove that for a.e. $x \in (1, \infty)$ f^x (defined as $f^x(y) = f(x, y)$) is integrable on (0, 1) with respect to $m_{\mathbb{R}}$.
 - (c) <u>Use Fubini</u> to prove that f(x,y) is not integrable on $(1,\infty)\times(0,1)$ with respect to $m_{\mathbb{R}^2}$.

- 5. (a) Let f be defined by $f(x) = x^2 \sin(1/x^2)$ for $x \neq 0$, and f(0) = 0. Does f have finite variation over the interval [-1, 1]? Justify your answer and show your work.
 - (b) Compute the Lebesgue-Stieljes integral

$$\int_{[-2,2]} x^2 dF(x), \quad \text{where} \quad F(x) = \begin{cases} x+1 & \text{if } -2 \le x < -1, \\ 2 & \text{if } -1 \le x < 0, \\ x^2+1 & \text{if } 0 \le x < 2. \end{cases}$$

- 6. Let \mathcal{H} be a real Hilbert space with inner product $\langle \cdot, \cdot \rangle$ and norm $\| \cdot \|$. Let u and v be linearly independent, <u>unit</u> vectors in \mathcal{H} . Define M to be the linear span of u and v.
 - (a) Determine a <u>unit</u> vector w such that $\langle u, w \rangle = 0$ and the linear span of u and w equals M. Be sure that you verify the latter statement about the linear span of u and w.
 - (b) Let x be an element in $\mathcal{H} \setminus M$. Determine explicitly, in terms of u and w, a $y_0 \in M$ such that

$$||x - y_0|| = \inf\{||x - z|| : z \in M\}.$$

(c) Prove that the y_0 found in part (b) is unique and re-express it in terms of u and v.

- 7. Let X be a Banach space with norm $\|\cdot\|$ and let $\mathcal{L}(X,X)$ be the space of all bounded, linear operators mapping X into X.
 - (a) For $T \in \mathcal{L}(X, X)$ give the definition of ||T||.
 - (b) Assume that $T \in \mathcal{L}(X,X)$ satisfies $\|I-T\| < 1$, where I is the identity operator. Prove that T is invertible and that $\sum_{n=0}^{\infty} (I-T)^n$ converges in $\mathcal{L}(X,X)$ to T^{-1} .
 - (c) Assume that $T \in \mathcal{L}(X,X)$ is invertible and that $W \in \mathcal{L}(X,X)$ satisfies $||S-T|| < ||T^{-1}||^{-1}$. Prove that S is invertible.

8. Let (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) be measure spaces. Let K(x, y) be a measurable function mapping $X \times Y$ into \mathbb{R} with the following property. There exists a finite constant M > 0 such that for μ -almost every x

$$\int_{Y} |K(x,y)| \, d\nu(y) \le M$$

and for ν -almost every y

$$\int_X |K(x,y)| \, d\mu(x) \le M.$$

Prove that the operator

$$T: f \mapsto \int_{X \times Y} K(x, y) f(y) d\nu(y)$$

is a bounded operator from $L^p(Y)$ into $L^p(X)$ for all $1 \le p \le \infty$. Also prove that the operator norm of T does not exceed M.

<u>Hint</u>: For 1 first compute a suitable bound on <math>|Tf(x)| by applying Hölder's inequality to an appropriate factorization of the integrand.