UNIVERSITY OF MASSACHUSETTS
 DEPARTMENT OF MATHEMATICS AND STATISTICS ADVANCED EXAM - STATISTICS (II)

Tuesday, January 15, 2019

Work all problems and show all work. Explain your answers. State the theorems used whenever possible. 70 points are required to pass.

1. Let $\left\{X_{n}\right\}_{n \geq 1}$ be a sequence of real-valued random variables and X be another real-valued random variable. Suppose that X_{n} has distribution function $F_{n}(x)$ for each n and X has distribution function $F(x)$.
(a) State the definition of almost sure convergence or convergence with probability 1 (denoted as $\left.X_{n} \xrightarrow{\text { a.s. }} X\right)$.
(b) State the definition of convergence in probability (denoted as $X_{n} \xrightarrow{P} X$).
(c) State the definition of convergence in a-th mean (denoted as $X_{n} \xrightarrow{a} X$).
(d) State the definition of convergence in distribution (denoted as $X_{n} \xrightarrow{d} X$).
2. Suppose that X_{n} is distributed as a $\operatorname{Bernoulli}\left(p_{n}\right)$ where $n=1,2, \ldots$. That is, $P\left(X_{n}=1\right)=$ $1-P\left(X_{n}=0\right)=p_{n}$.
(a) Suppose that $p_{n}=1 / n^{2}$. Prove that $X_{n} \xrightarrow{\text { a.s. }} 0$. You may use the fact that $\sum_{n=1}^{\infty} \frac{1}{n^{2}}=$ $\pi^{2} / 6$.
(b) Suppose that $p_{n}=1 / n^{2}$. Suppose that $F_{n}(x)$ is the distribution function of X_{n} and $F(x)$ is the distribution function of a constant zero random variable (i.e., $X=0$). Prove that $F_{n}(x) \rightarrow F(x)$ as $n \rightarrow \infty$ for all real numbers x (i.e., $X_{n} \xrightarrow{d} 0$ and $F_{n}(0) \rightarrow F(0)$ as $n \rightarrow \infty)$.
(c) Suppose that $p_{n}=1 / n$. Prove that $\bar{X}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i} \xrightarrow{P} 0$. You may use the fact that $\sum_{i=1}^{n} \frac{1}{i}$ is asymptotically equivalent to $\log n$, denoted as $\sum_{i=1}^{n} \frac{1}{i} \sim \log n$.
3. Let X_{1}, \ldots, X_{n} be a sequence of independent random variables such that $X_{n}=\sqrt{n}$ with probability $1 / 2$ and $X_{n}=-\sqrt{n}$ with probability $1 / 2$, for $n=1,2, \ldots$.
Find the asymptotic distribution of $\bar{X}=(1 / n) \sum_{i=1}^{n} X_{i}$.
(Hint) : Check the Lindeberg condition.
4. Suppose that Y_{1}, Y_{2}, \cdots are independent and identically distributed from a distribution with density function $f_{\theta}(y)=\theta / y^{\theta+1}, y>1$ and $\theta>2$. Note that $E\left(Y_{i}\right)=\frac{\theta}{\theta-1}$ and $\operatorname{Var}\left(Y_{i}\right)=$ $\frac{\theta}{(\theta-2)(\theta-1)^{2}}$.
(a) Find the asymptotic distribution of $\bar{Y}_{n}=\frac{1}{n} \sum_{i=1}^{n} Y_{i}$.
(b) Consider an estimator $\tilde{\theta}_{n}=\frac{\bar{Y}_{n}}{Y_{n}-1}$. Find the asymptotic distribution of $\tilde{\theta}_{n}$.
(c) Find the root of the likelihood equation, and show that the likelihood equation has a unique solution, denoted as $\hat{\theta}_{n}$.
(d) Check the regularity conditions necessary for consistency of the root of the likelihood equation.
(e) Find the asymptotic distribution of $\hat{\theta}_{n}$ in (c).
(f) Is $\tilde{\theta}_{n}$ in (b) asymptotically efficient? Justify your answer.
5. Suppose that our problem is to find $\mu=E_{p}(f(X))=\int_{\mathcal{D}} f(x) p(x) d x$ where p is a probability density function on $\mathcal{D} \subset \mathcal{R}$ (real line) and f is the integrand. The importance sampling technique for approximating μ is to sample from an importance distribution q, that is a positive probability density function on \mathcal{R} and use $\hat{\mu}=\frac{1}{n} \sum_{i=1}^{n} f\left(Y_{i}\right) p\left(Y_{i}\right) / q\left(Y_{i}\right)$ to approximate μ. Here n is the sample size and Y_{i} is a random (i.i.d) sample drawn from the importance distribution q (i.e., $Y_{1}, \ldots, Y_{n} \stackrel{i . i . d}{\sim} q$).
(a) Show that $\hat{\mu} \xrightarrow{P} \mu$ when n goes to infinity.
(b) Suppose that p is a uniform distribution on $(0,1)$, denoted by $U(0,1), q$ is a uniform distribution on $(0,1 / 2)$, denoted by $U(0,1 / 2)$, and that $f(x)=x^{2}$. Show that $\hat{\mu} \xrightarrow{P}$ $E_{q}(f(Y) p(Y) / q(Y))$ which is not equal to $E_{p}(f(X))$. In this case, is q an appropriate importance distribution for approximating $E_{p}(f(X))$?
(c) Suppose that $q(x)=\exp (-x)$ for $x>0$ and that $f(x)=|x|$ for all $x \in \mathcal{R}$, so that $q(x)=0$ at some x where $f(x) \neq 0$. Give a density $p(x)$ for which the expectation of $f(X) p(X) / q(X)$ for $X \sim q$ matches the expectation of $f(X)$ for $X \sim p$.
