DEPARTMENT OF MATHEMATICS AND STATISTICS UNIVERSITY OF MASSACHUSETTS AMHERST
 APPLIED MATHEMATICS EXAM
 JANUARY 2019

Do five of the following problems. All problems carry equal weight.
Passing level:
Masters: 60% with at least two substantially correct.

1. Consider the following Logistic model with harvesting

$$
\dot{x}=r x(K-x)-h,
$$

where K is the environment capacity, r is the growth rate, and h is the harvesting rate.
(a) When $h=0$, solve this equation with initial value $x(0)=x_{0}$.
(b) Show that a bifurcation occurs at a certain value h_{c} and classify this bifurcation.
(c) Draw the bifurcation diagram for different values of h.
(d) Discuss the asymptotic behavior of the population for $h<h_{c}$ and $h>h_{c}$ and give relevant biological interpretation.
2. Consider a predator-prey model

$$
\begin{aligned}
\dot{x} & =x(\alpha-\beta y) \\
\dot{y} & =y(-\gamma+\delta x),
\end{aligned}
$$

where $\alpha, \beta, \gamma, \delta$ are positive constants, x, y represent prey and predator population respectively.
(a) Find all equilibria of this model and classify their linear stabilities.
(b) Show that there exists a function $H(x, y)$ such that H is constant along a solution $(x(t), y(t))$. (Hint: integrate

$$
-\frac{-\gamma+\delta x}{x} \frac{\mathrm{~d} x}{\mathrm{~d} t}+\frac{\alpha-\beta y}{y} \frac{\mathrm{~d} y}{\mathrm{~d} t}=0
$$

on both sides.)
(c) Show that every orbit is periodic. Find the average predator and prey population over the period T. (Hint: for predator population, use

$$
\int_{0}^{T} \mathrm{~d} t \frac{\dot{x}(t)}{x(t)}=\int_{0}^{T} \mathrm{~d} t(\alpha-\beta y(t))
$$

)
3. The Lorenz system

$$
\begin{aligned}
\dot{x} & =\sigma(y-x) \\
\dot{y} & =\rho x-y-x z \\
\dot{z} & =x y-\beta z
\end{aligned}
$$

is a simplified model for atmospheric convections.
(a) Assume $0<\rho<1, \beta, \sigma>0$. Find suitable numbers a, b, c such that

$$
L=a x^{2}+b y^{2}+c z^{2}
$$

is a Lyapunov function for the origin.
(b) Explain why this system has no periodic orbit when $0<\rho<1, \beta, \sigma>0$.
(c) Show that a pitchfork bifurcation occurs at $\rho=1$, and two additional equilibria occurs for $\rho>1$.
4. Solve explicitly the viscous Burgers equation as follows:
(a) Let $u=u(x, t)>0$ be a solution of the heat equation

$$
u_{t}-k u_{x x}=0, \quad x \in \mathbb{R}, \quad t>0,
$$

where $k>0$ is a constant. Show that

$$
v(x, t)=-\frac{2 k u_{x}(x, t)}{u(x, t)},
$$

solves the viscous Burgers equation

$$
v_{t}+v v_{x}=k v_{x x} .
$$

(b) Using (a), write an explicit formula for the solution $v=v(x, t)$ of the viscous Burgers equation with initial datum $v(x, t=0)=\phi(x)$, where $\phi(x)$ is a smooth function.
5. (a) Find the steady-state solution to the wave equation

$$
\begin{equation*}
u_{t t}-c^{2} u_{x x}=0, \quad x \in[0, L], \tag{1}
\end{equation*}
$$

if $u(x, t)=v(x) \sin (\omega t)$ with $u(x=0, t)=0$ and $u(x=L, t)=A \sin (\omega t)$. Assume that $\omega / c \neq m \pi / L$ for any $m=1,2, \ldots$.
(b) What happens when $\omega / c=m \pi / L$ for some $m=1,2, \ldots$?
6. Consider the diffusion equation

$$
u_{t}=u_{x x},
$$

with zero Dirichlet boundary conditions imposed on $x=0$ and $x=1$ as well as initial datum $u(x, t=0)=x$. Solve the PDE by using the method of separation of variables, applying the boundary conditions and then the initial condition.
7. Suppose that $\rho(x, t)$ is the number density of cars evolving according to a traffic model

$$
\frac{\partial \rho}{\partial t}+\frac{\partial(\rho u)}{\partial x}=0
$$

where u is the car speed. Let $u=1-\rho$.
(a) A queue is building up at a traffic light $x=1$ at $t=0$. Use the method of characteristics to solve the equation for the initial data

$$
\rho(x, 0)=\left\{\begin{array}{cc}
0 & x<0 \text { and } x>1 \\
x, & 0 \leq x \leq 1
\end{array}\right.
$$

(b) Do solutions exist globally in time? Explain your answer and plot solutions for suitably selected typical times.

