DEPARTMENT OF MATHEMATICS AND STATISTICS UNIVERSITY OF MASSACHUSETTS, AMHERST

ADVANCED EXAM — ALGEBRA

AUGUST 2018

Passing Standard: To pass the exam it is sufficient to solve five problems including a least one problem from each of the three parts. Show all your work and justify your answers carefully.

1. Group theory

- 1. Let p, q be odd primes. Prove that a group of order 2pq is solvable. Note: p, q may or may not be distinct!
- **2.** Let p be a prime. Determine the number of conjugacy classes of a **non-Abelian** group G of order p^3 .
- **3.** Let G be a group of order 60. Assume that the center Z(G) has order divisible by 4. Show that G is abelian.

2. Commutative algebra

- **4.** Let R with a commutative ring with 1.
- (a) Suppose M is a finitely generated free R-module. Show that $\operatorname{Hom}_R(M,R)$ is a finitely generated free R-module.
- (b) Suppose M is a free R-module, but **not** finitely generated. Prove or give a counter-example to the following statement: $\operatorname{Hom}_R(M,R)$ is a free R-module.
- (c) Suppose M is a finitely generated R-module, but **not** free. Prove or give a counter-example to the following statement: $\operatorname{Hom}_R(M,R)$ is a finitely generated R-module.
- **5.** Let R be a principal ideal domain and let A, B, C be finitely generated R-modules. Show that if $A \oplus B \cong A \oplus C$, then $B \cong C$.
 - **6.** Consider the ring

$$R = \{(a, b) \in \mathbf{Z} \times \mathbf{Z} \mid a \equiv b \pmod{5}\}.$$

(1) Show that the homomorphism

$$f: \mathbf{Z}[x] \to R$$

- sending 1 to (1,1) and x to (5,0) is surjective with kernel (x^2-5x) .
- (2) Determine all prime ideals of R containing $f(3) = 3 \cdot 1_R$.
- (3) Determine all prime ideals of R containing $f(5) = 5 \cdot 1_R$.

2 AUGUST 2018

3. FIELD THEORY AND GALOIS THEORY

- 7. Let L/K be a finite extension of fields such that $L = K(\alpha, \beta)$ for some elements $\alpha, \beta \in L$. Suppose $[K(\alpha) : K]$ and $[K(\beta) : K]$ are relatively prime.
 - (a) Show that the minimal polynomial of α over K is irreducible over $K(\beta)$.
 - (b) Show that $[L : K] = [K(\alpha) : K][K(\beta) : K]$.
- 8. Show that $\mathbf{Q}(\sqrt{5} + \sqrt{11})$ is Galois over \mathbf{Q} and determine its Galois group. Hint: Obviously $\mathbf{Q}(\sqrt{5} + \sqrt{11})$ is a subfield of $\mathbf{Q}(\sqrt{5}, \sqrt{11})$. What does that say about $[\mathbf{Q}(\sqrt{5} + \sqrt{11}) : \mathbf{Q}]$?
- **9.** Let p be a prime and let K be a finite field of order p^{30} . Determine the number of elements $\alpha \in K$ such that $K = \mathbf{F}_p(\alpha)$.