DEPARTMENT OF MATHEMATICS AND STATISTICS UNIVERSITY OF MASSACHUSETTS, AMHERST ## ADVANCED EXAM — ALGEBRA ### AUGUST 2018 **Passing Standard:** To pass the exam it is sufficient to solve five problems including a least one problem from each of the three parts. Show all your work and justify your answers carefully. ## 1. Group theory - 1. Let p, q be odd primes. Prove that a group of order 2pq is solvable. Note: p, q may or may not be distinct! - **2.** Let p be a prime. Determine the number of conjugacy classes of a **non-Abelian** group G of order p^3 . - **3.** Let G be a group of order 60. Assume that the center Z(G) has order divisible by 4. Show that G is abelian. ### 2. Commutative algebra - **4.** Let R with a commutative ring with 1. - (a) Suppose M is a finitely generated free R-module. Show that $\operatorname{Hom}_R(M,R)$ is a finitely generated free R-module. - (b) Suppose M is a free R-module, but **not** finitely generated. Prove or give a counter-example to the following statement: $\operatorname{Hom}_R(M,R)$ is a free R-module. - (c) Suppose M is a finitely generated R-module, but **not** free. Prove or give a counter-example to the following statement: $\operatorname{Hom}_R(M,R)$ is a finitely generated R-module. - **5.** Let R be a principal ideal domain and let A, B, C be finitely generated R-modules. Show that if $A \oplus B \cong A \oplus C$, then $B \cong C$. - **6.** Consider the ring $$R = \{(a, b) \in \mathbf{Z} \times \mathbf{Z} \mid a \equiv b \pmod{5}\}.$$ (1) Show that the homomorphism $$f: \mathbf{Z}[x] \to R$$ - sending 1 to (1,1) and x to (5,0) is surjective with kernel (x^2-5x) . - (2) Determine all prime ideals of R containing $f(3) = 3 \cdot 1_R$. - (3) Determine all prime ideals of R containing $f(5) = 5 \cdot 1_R$. 2 AUGUST 2018 # 3. FIELD THEORY AND GALOIS THEORY - 7. Let L/K be a finite extension of fields such that $L = K(\alpha, \beta)$ for some elements $\alpha, \beta \in L$. Suppose $[K(\alpha) : K]$ and $[K(\beta) : K]$ are relatively prime. - (a) Show that the minimal polynomial of α over K is irreducible over $K(\beta)$. - (b) Show that $[L : K] = [K(\alpha) : K][K(\beta) : K]$. - 8. Show that $\mathbf{Q}(\sqrt{5} + \sqrt{11})$ is Galois over \mathbf{Q} and determine its Galois group. Hint: Obviously $\mathbf{Q}(\sqrt{5} + \sqrt{11})$ is a subfield of $\mathbf{Q}(\sqrt{5}, \sqrt{11})$. What does that say about $[\mathbf{Q}(\sqrt{5} + \sqrt{11}) : \mathbf{Q}]$? - **9.** Let p be a prime and let K be a finite field of order p^{30} . Determine the number of elements $\alpha \in K$ such that $K = \mathbf{F}_p(\alpha)$.