ADVANCED CALCULUS/LINEAR ALGEBRA BASIC EXAM

DEPARTMENT OF MATHEMATICS AND STATISTICS UNIVERSITY OF MASSACHUSETTS AMHERST JANUARY 17, 2018

Insructions: Do all 7 problems. Show your work. The passing standards are:

- Master's level: 60% with three questions essentially, complete (including one question from each part);
- Ph.D. level: 75% with two questions from each part essentially complete.

Linear Algebra

1. Find a basis for the kernel and image (range) of the following matrix

$$
A=\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
2 & 1 & 4 & 3 \\
3 & 4 & 1 & 2
\end{array}\right)
$$

2. Consider the matrix $A=\left(\begin{array}{lll}1 & 0 & 4 \\ 2 & 3 & 2 \\ 4 & 0 & 1\end{array}\right)$.
(a) Show that A is diagonalizable.
(b) Find the eigenvalues of A.
(c) Find an orthogonal basis of eigenvectors of A with respect to the usual inner product.
3. Let V be a finite dimensional vector space and $T: V \rightarrow V$ be a linear transformation.
(a) Show that $\operatorname{rank}(T) \geq \operatorname{rank}\left(T^{2}\right)$.
(b) If $\operatorname{rank}(T)=\operatorname{rank}\left(T^{2}\right)$ show that $\operatorname{ker}(T) \cap \operatorname{image}(T)=\{\mathbf{0}\}$. Conclude that $V=\operatorname{ker}(T) \oplus$ image $(T)(\oplus$ denotes direct sum).
(c) Prove that there is a positive integer m such that $V=\operatorname{ker}\left(T^{m}\right) \oplus \operatorname{rank}\left(T^{m}\right)$.

Advanced Calculus

4. Find the first five coefficients of the Maclaurin series (Taylor series at $x=0$) of

$$
\frac{e^{x}}{\cos x}=\ldots \quad+\ldots \frac{x^{2}}{2!}+\ldots \frac{x^{3}}{3!}+\ldots \frac{x^{4}}{4!}
$$

5. Consider the sequence a_{1}, a_{2}, \ldots defined recursively by

$$
a_{1}=1, \quad a_{n}=1+\frac{1}{a_{n-1}} .
$$

Give a careful proof that the sequence converges and determine its limit.
6. Find the global extreme values of $f(x, y)=x y$ in the domain $D=\left\{(x, y) \mid x^{2} / 8+y^{2} / 2 \leq 1\right\}$.
7. Evaluate

$$
\oiint_{S}\langle x, y, 2-2 z\rangle \cdot d \mathbf{A},
$$

where S is the surface formed by the paraboloid $z=1-x^{2}-y^{2}$ above the $x y$-plane (i.e. $z \geq 0$), with outward pointing normal vector.

