DEPARTMENT OF MATHEMATICS AND STATISTICS UNIVERSITY OF MASSACHUSETTS, AMHERST

ADVANCED EXAM — ALGEBRA

JANUARY 2018

Passing Standard: To pass the exam it is sufficient to solve five problems including a least one problem from each of the three parts. Show all your work and justify your answers carefully.

1. Group theory and representation theory

- 1. Show that there are no simples groups of order 80.
- 2. Determine the character table of the quaternion group

$$G = \{\pm 1, \pm i, \pm j, \pm k\}$$

of order 8, where the multiplication rule is determined by

$$i^2 = j^2 = k^2 = ijk = -1.$$

3. Let G be a finite group with center Z. Show that if G/Z is a p-group for some prime p, then G has a normal Sylow p-subgroup and p divides #Z.

2. Commutative algebra

4. Let

$$R = \mathbf{Z}[\sqrt{-3}] = \{a + b\sqrt{-3} \mid a, b \in \mathbf{Z}\} \subset \mathbf{C}.$$

Determine (with proof) whether R is a unique factorization domain.

- **5.** Let V be a finite dimensional vector space over a field F and let $T:V\to V$ be an F-linear transformation. Let $f\in F[x]$ be the characteristic polynomial of T. Show that f is irreducible over F if and only if there are no proper nonzero subspaces $W\subseteq V$ such that $T(W)\subseteq W$.
 - **6.** Consider the ring

$$R = \{(a, b) \in \mathbf{Z} \times \mathbf{Z} \mid a \equiv b \pmod{3}\}.$$

(1) Show that the homomorphism

$$f: \mathbf{Z}[x] \to R$$

sending 1 to (1,1) and x to (3,0) is surjective with kernel (x^2-3x) .

- (2) Determine all prime ideals of R containing 5.
- (3) Determine all prime ideals of R containing 3.

3. FIELD THEORY AND GALOIS THEORY

- 7. Prove that -1 is not a sum of squares in the field $\mathbf{Q}(\alpha)$ where $\alpha \in \mathbf{C} \setminus \mathbf{R}$ is a cube root of 5.
- **8.** Let $f(x) = x^4 4x^2 + 2$ and let K be the splitting field of f(x) over **Q**. Determine the Galois group of K over **Q**.
- **9.** Let K be a finite field and let L be an extension of K of degree n. Fix a monic irreducible polynomial $f \in K[x]$ of degree d dividing n. Show that there is $\alpha \in L$ which has minimal polynomial over K equal to f.