DEPARTMENT OF MATHEMATICS AND STATISTICS UNIVERSITY OF MASSACHUSETTS, AMHERST ADVANCED EXAM - ALGEBRA. FALL 2017

Passing Standard: It is sufficient to do FIVE problems correctly, including at least ONE FROM EACH of the THREE parts.

Part I. Group Theory and Representation Theory

1. Let G be a non-Abelian group of order 21. Describe G in terms of generators and relations.
2. Let ρ be the permutation representation assoicated to the action of D_{3} (dihedral of order 6) on itself by conjugation. Decompose the character of ρ into irreducible D_{3}-characters. Show your work.
3. Let G be a group acting faithfully on a set X of five elements, in other words if $g x=x$ for all $x \in X$ then $g=i d$. There are two orbits of this G-action, one of size 2 and one of size 3. What are the possible groups? Justify your reasoning.

Hint: Map G to a product of symmetric groups.

Part II. Commutative Algebra

4. Let $R=\mathbf{Z}[\sqrt{-2}]=\{a+b \sqrt{-2}: a, b \in \mathbf{Z}\} \subset \mathbf{C}$. Show that R is a unique factorization domain.
5. (a) Show that $\mathbf{C} \otimes_{\mathbf{R}} \mathbf{C}$ and $\mathbf{C} \otimes_{\mathbf{C}} \mathbf{C}$ are not isomorphic as \mathbf{R}-modules.
(b) Show that $\mathbf{Q} \otimes_{\mathbf{z}} \mathbf{Q}$ and $\mathbf{Q} \otimes_{\mathbf{Q}} \mathbf{Q}$ are isomorphic as \mathbf{Q}-modules.

Hint: What are \mathbf{R}-modules? What are \mathbf{Q}-modules?
6. Let R be an integral domain and M a finitely generated R-module. We say that M is torsion-free if for all $r \in R$ and $m \in M$, if $r m=0$ then $r=0$ or $m=0$.
(a) Show that if M is a free R-module then M is torsion-free.
(b) Show that if R is a principal ideal domain and M is torsion-free, then M is a free R-module.
(c) Give an example of an integral domain R and a finitely generated R-module M such that M is torsion-free and M is not a free R-module. Justify your reasoning.

Part III. Field Theory and Galois Theory

7. (a) Prove that $f(x)=x^{3}+3 x+2$ and $g(x)=x^{5}+4 x+6$ are irreducible over \mathbf{Q}.
(b) Let $\alpha \in \mathbf{C}$ be a root of $f(x)$ and $\beta \in \mathbf{C}$ be a root of $g(x)$. Determine the degree of the field extension $\mathbf{Q}(\alpha, \beta) / \mathbf{Q}$. Justify your reasoning.
8. Let K be a finite field of size 3^{6}.
(a) Show that there are exactly 696 elements $\alpha \in K$ such that $K=\mathbf{F}_{3}(\alpha)$.
(b) Determine the number of monic irreducible polynomials over \mathbf{F}_{3} of degree 6.

Justify your reasoning!
9. Let $\alpha \in \mathbf{C}$ be a root of $h(x)=x^{6}+3=0$. Show that $\mathbf{Q}(\alpha) / \mathbf{Q}$ is a Galois extension, and determine its Galois group. Show your work!

Hint: What are the roots of h ?

Passing Standard: It is sufficient to do FIVE problems correctly, including at least ONE FROM EACH of the THREE parts.

Page 2 of 2

