DEPARTMENT OF MATHEMATICS AND STATISTICS UNIVERSITY OF MASSACHUSETTS, AMHERST ADVANCED EXAM — ALGEBRA. FALL 2017

Passing Standard: It is sufficient to do FIVE problems correctly, including at least ONE FROM EACH of the THREE parts.

PART I. GROUP THEORY AND REPRESENTATION THEORY

1. Let G be a non-Abelian group of order 21. Describe G in terms of generators and relations.

2. Let ρ be the permutation representation associated to the action of D_3 (dihedral of order 6) on itself by conjugation. Decompose the character of ρ into irreducible D_3 -characters. Show your work.

3. Let G be a group acting *faithfully* on a set X of five elements, in other words if gx = x for all $x \in X$ then g = id. There are two orbits of this G-action, one of size 2 and one of size 3. What are the possible groups? Justify your reasoning.

Hint: Map G to a product of symmetric groups.

PART II. COMMUTATIVE ALGEBRA

4. Let $R = \mathbb{Z}[\sqrt{-2}] = \{a + b\sqrt{-2} : a, b \in \mathbb{Z}\} \subset \mathbb{C}$. Show that R is a unique factorization domain.

5. (a) Show that C ⊗_R C and C ⊗_C C are not isomorphic as R-modules.
(b) Show that Q ⊗_Z Q and Q ⊗_Q Q are isomorphic as Q-modules. *Hint:* What are R-modules? What are Q-modules?

6. Let R be an integral domain and M a finitely generated R-module. We say that M is torsion-free if for all $r \in R$ and $m \in M$, if rm = 0 then r = 0 or m = 0.

(a) Show that if M is a free R-module then M is torsion-free.

(b) Show that if R is a principal ideal domain and M is torsion-free, then M is a free R-module.

(c) Give an example of an integral domain R and a finitely generated R-module M such that M is torsion-free and M is *not* a free R-module. Justify your reasoning.

PART III. FIELD THEORY AND GALOIS THEORY

7. (a) Prove that $f(x) = x^3 + 3x + 2$ and $g(x) = x^5 + 4x + 6$ are irreducible over **Q**.

(b) Let $\alpha \in \mathbf{C}$ be a root of f(x) and $\beta \in \mathbf{C}$ be a root of g(x). Determine the degree of the field extension $\mathbf{Q}(\alpha, \beta)/\mathbf{Q}$. Justify your reasoning.

8. Let K be a finite field of size 3^6 .

- (a) Show that there are exactly 696 elements $\alpha \in K$ such that $K = \mathbf{F}_3(\alpha)$.
- (b) Determine the number of monic irreducible polynomials over \mathbf{F}_3 of degree 6.
- Justify your reasoning!

9. Let $\alpha \in \mathbf{C}$ be a root of $h(x) = x^6 + 3 = 0$. Show that $\mathbf{Q}(\alpha)/\mathbf{Q}$ is a Galois extension, and determine its Galois group. Show your work!

Hint: What are the roots of h?

Passing Standard: It is sufficient to do FIVE problems correctly, including at least ONE FROM EACH of the THREE parts.