ADVANCED CALCULUS/LINEAR ALGEBRA BASIC EXAM

DEPARTMENT OF MATHEMATICS AND STATISTICS UNIVERSITY OF MASSACHUSETTS AMHERST
SEPTEMBER 7, 2017

Do all 7 problems. Show your work. The passing standards are:

- Master's level: 60% with three questions essentially complete (including one from each part);
- Ph.D. level: 75% with two questions from each part essentially complete.

Linear Algebra

(1) (a) Let $T: V \rightarrow V$ be a linear transformation on a vector space V over a field F and suppose that $V=\operatorname{im} T+\operatorname{ker} T$; that is, V is spanned by the image and kernel of T. Prove that if V is finite-dimensional then V is the direct sum of $\operatorname{im} T$ and $\operatorname{ker} T$.
(b) Give a counterexample to the above assertion when V is infinite dimensional.
(c) Give an example where $\operatorname{dim} V=4$ and $\operatorname{dim}(\operatorname{im} T+\operatorname{ker} T)<4$.
(2) Show that every complex $n \times n$ matrix is similar to its transpose. It helps to first consider the case of a single Jordan block.
(3) Consider the matrix

$$
A=\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right]
$$

(a) Find the eigenvalues of A.
(b) Find an orthogonal basis of eigenvectors of A.

Advanced Calculus

(4) Let f be a continuous function on $[a, b]$. If

$$
\int_{a}^{b} f(x) g(x) d x=0
$$

for all continuous functions g on $[a, b]$, show that f is identically zero on $[a, b]$.
(5) Find A and B such that

$$
\lim _{x \rightarrow 0} \frac{e^{x^{2}}+A \cos B x}{x^{4}}
$$

exists, and calculate the resulting limit.
(6) Find the positively oriented (counterclockwise) simple closed curve C which maximizes the value of the line integral

$$
\int_{C}\left(x^{2} y+y^{3}\right) d x+x d y
$$

(7) For which integers k is the function

$$
f(x)= \begin{cases}x^{k} & \text { if } x=1 / n, n \text { a positive integer } \\ 0 & \text { otherwise }\end{cases}
$$

continuous at $x=0$? For which k is it differentiable at $x=0$?

