# COMPLEX ANALYSIS BASIC EXAM UNIVERSITY OF MASSACHUSETTS, AMHERST DEPARTMENT OF MATHEMATICS AND STATISTICS <br> AUGUST 2016 

- Each problem is worth 10 points.
- Passing Standard: Do 8 of the following 10 problems, and
- Master's level: 45 points with three questions essentially complete
- Ph. D. level: 55 points with four questions essentially complete
- Justify your reasoning!

1. Show that the function $\exp \left(-z^{2}\right)$ has a primitive on $\mathbf{C}$. You do not have to find the actual primitive.
2. Show that

$$
\int_{-\infty}^{\infty}\left(\frac{\sin x}{x}\right)^{3} d x=\frac{3 \pi}{4}
$$

Show the contour and prove all estimates you use. Hint: Consider the function $\frac{-2+3 e^{i z}-e^{3 i z}}{z^{3}}$.
3. Let $f$ be an analytic function on the open unit disk $D:=\{z:|z|<1\}$, such that $|f(z)|<1$ for all $z \in D$ and that $f(0)=0$. Show that for any fixed $0<r<1$, the series

$$
\sum_{n=0}^{\infty} f\left(z^{n}\right)
$$

converges uniformly for $|z| \leq r$.
4. (a) [5 points] Determine the type of every isolated singularity (including possibly at infinity) of the function

$$
\frac{e^{z}}{1+z^{2}}
$$

Show your work.
(b) [5 points] Find the Laurent series of

$$
\frac{1}{\left(1+z^{2}\right)\left(2+z^{2}\right)}
$$

for $1<|z|<\sqrt{2}$. Show your work.
5. (a) [5 points] Determine all conformal maps $\phi$ from the open unit disk to itself, such that $\phi(0)$ lies on the real axis and that the arc on the unit circle with angle $0 \leq \theta \leq \pi / 2$ is taken to the arc with angle $\pi / 2 \leq \theta \leq 7 \pi / 6$. Show your work.
(b) [5 points] Determine the fractional linear transformation $\varphi$ that takes the points $-1,0,1$ respectively to the points $1, i,-1$, and determine the image under $\varphi$ of the upper half plane. Show your work.
6. (a) [5 points] Construct a holomorphic function on $\mathbf{C}$ with real part $e^{-x}(x \sin y-y \cos y)$. Show your work.
(b) [5 points] Let $u(x, y)$ be a real-valued harmonic function on $\mathbf{R}^{2}$ such that $u(x, y)^{2}$ is also harmonic. Show that $u$ is constant.
7. Let $U$ be an open subset of the complex plane. Suppose that $\left\{f_{n}\right\}$ is a sequence of analytic functions defined on $U$ and converges uniformly on compact subsets of $U$ to an analytic function $f$. Show that $\left\{f_{n}^{\prime}\right\}$ converges uniformly on compact subsets of $U$ to $f^{\prime}$.
8. Let $P_{n}(z)=\sum_{k=0}^{n} z^{k} / k!$. Given $R$, prove that $P_{n}$ has no zeros in the disk of radius $R$ for all $n$ sufficiently large.
9. Let $C$ be the circle $\{z:|z|=2\}$ traversed counter-clockwise. Compute $\int_{C} \frac{z^{2 n} \cos (1 / z)}{1-z^{n}} d z$ for all integers $n \geq 2$. Show your work.
10. Let $f(z)$ be an entire function and suppose that $|f(z)| \leq\left|\sin ^{3}(z)\right|$ for all $z \in \mathbf{C}$. Prove that $f(z)=\lambda \sin ^{3}(z)$ for some $\lambda \in \mathbb{C}$.

