NAME:

Advanced Analysis Qualifying Examination Department of Mathematics and Statistics University of Massachusetts

September 2016

Instructions

- 1. This exam consists of eight (8) problems all counted equally for a total of 100%.
- 2. You are encouraged to try to solve every problem; there is no penalty for incorrect answers.
- 3. In order to pass this exam, it is enough that you solve essentially correctly at least five (5) problems and that you have an overall score of at least 65%.
- 4. State explicitly all results that you use in your proofs and verify that these results apply.
- 5. Please write your work and answers <u>clearly</u> in the blank space under each question and on the blank page after each question.

1. Let $f:[0,1] \to \mathbb{C}$ be a **continuous** function. Provide a proof for the fact that

$$\lim_{n \to \infty} \int_0^1 e^{-2\pi nx} f(x) \, dx = 0.$$

Either by proof or example, determine whether there can be an f as above, and such that

$$\left| \int_0^1 e^{-2\pi nx} f(x) \, dx \right|^2 \ge \frac{1}{n}, \quad \forall \ n \in \mathbb{N}.$$

Hint: Consider the Hilbert space $L^2(0,1)$ *with the usual product.*

2. Define what it means for a function $f : [0,1] \to \mathbb{R}$ to be of bounded variation. Then, show that if f is a bounded, nondecreasing, measurable function in [0,1], then it must be of bounded variation.

3. Let $K\in \mathcal{S}(\mathbb{R}^1)$ and $\phi\in L^1(\mathbb{R}^1)\cap L^\infty(\mathbb{R}^1)$ be such that

$$K * \phi \equiv 0$$
 in \mathbb{R}^1 .

Assuming that the Fourier transform of K is never zero, prove that $\phi = 0$ a.e.

4. Let $f : \mathbb{R}^d \to \mathbb{R}$ be measurable, non-negative. Define $\lambda_f : (0, \infty) \to \mathbb{R}$ by

$$\lambda_f(\alpha) := m(\{x : f(x) > \alpha\}), \quad (m = \text{Lebesgue measure}).$$

Prove that $\lambda_f(\cdot)$ is Lebesgue measurable and that (allowing for $\infty = \infty$)

$$\int_{\mathbb{R}^d} f(x) \, dx = \int_0^\infty \lambda(\alpha) \, d\alpha.$$

5. Let μ be a finite measure on the Borel sets of X = [0, 1] such that $\mu(\{x\}) = 0$ for all $x \in X$. Prove that for every $\epsilon > 0$ there exists a $\delta > 0$ such that $\mu(A) \le \epsilon$ for all intervals $A \subset X$ contained in $(\frac{1}{2} - \delta, \frac{1}{2} + \delta)$.

- 6. Given $f : \mathbb{R} \to \mathbb{R}$ define $f_h(x) = f(x h)$.
 - (a) Show that if f is continuous with compact support then $\lim_{h\to 0} ||f_h f||_{\infty} = 0$.
 - (b) Show that if $f \in L^p(\mathbb{R})$ with $1 \le p < \infty$ then $\lim_{h \to 0} ||f_h f||_p = 0$.
 - (c) Prove or disprove by a counterexample: if $f \in L^{\infty}(\mathbb{R})$ then $\lim_{h\to 0} ||f_h f||_{\infty} = 0$.

- 7. Let (X, \mathcal{F}, μ) be a measure space. Let $f_n, f, g_n, g : X \to R$ for $n \in N$ be measurable functions. Suppose that $f_n \to f$ and $g_n \to g$ in measure as $n \to \infty$.
 - (a) Prove that $f_n + g_n \to f + g$ in measure as $n \to \infty$.
 - (b) Assume that that $\mu(X) \leq \infty$. Prove that $f_n g_n \to fg$ in measure as $n \to \infty$.
 - (c) If $\mu(X) = \infty$, prove or disprove by a counterexample: $f_n g_n \to fg$ in measure as $n \to \infty$.

- 8. Consider Lebesgue measure on Borel sets of $(0,\infty)$. Prove that for every $f\in L^2(0,\infty)$
 - (a) The inequality $\left|\int_0^x f(x)dx\right|^2 \le 2\sqrt{x}\int_0^x \sqrt{s}|f(s)|^2 ds$ holds for all $x \in (0,\infty)$. (b) The inequality $||F||_2 \le 2||f||_2$ where $F(x) = \frac{1}{x}\int_0^x f(s)ds$.

Hint: for part a), consider using Hölder's or Cauchy's inequality.